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SECTION 1

INTRODUCTION

The use of advanced automation technology in space operations is complicated by the demanding
conditions of that environment. These conditions include high risk actions, noisy data, dynamic

complex systems, and large quantities of information that must be processed in a timely manner.

Designing intelligent systems I for effective human-computer interaction (HCI) in such an
environment requires defining the information that must be exchanged between the human and the

intelligent system to perform tasks (the information requirements). These information require-
ments include both the information supporting the domain tasks (monitoring and controlling a

space system) and the information supporting the human in the new task of supervising the intelli-
gent system. Failure to provide either type of information can result in systems that are not robust
and are difficult to use.

A series of studies have been conducted to investigate the design of robust, usable intelligent

systems for space operations (what we have termed "designing intelligent systems to be team
players"). The first study was conducted in 1991. The purpose of this study was to provide
guidance in designing intelligent fault management systems for improved human-computer interac-
tion. The results of this study are documented in two NASA technical memoranda (Malin, et al,
1991; Malin and Schreckenghost, 1992). In 1992, additional cases were studied to investigate
issues identified in the initial study. This report documents the results of this second case study.
Both of these studies were conducted as part of a Research and Technology Operating Plan

(RTOP) for the Office of Aeronautics, Commercialization, and Technology (OACT) 2.

1.1 Purpose and Objectives

The results of this study are intended as a supplement to the original design guidance documents

(Malin, et al, 1991; Malin and Schreckenghost, 1992). These results should be of interest to
designers of intelligent systems for use in real-time operations, and to researchers in the areas of
human-computer interaction and artificial intelligence.

The purpose of studying additional cases was to broaden the investigation of human-computer
interaction design issues beyond the focus on monitoring and fault detection in the fn'st case study
(Malin and Schreckenghost, 1992). New issues include (1) supporting the supervision of intelli-
gent systems, (2) using shared representation as an alternative to explanation, and (3) integrating
and coordinating multiple intelligent systems. The additional cases include intelligent software for
failure impact assessment, procedure analysis, and replanning in real-time.

1.2 Approach and Scope

Five systems were selected for study. These systems are summarized below:

• Propulsion Procedural Reasoning System (PRS): a fault management system for use by
the Space Shuttle propulsion flight controllers in identifying and recovering from faults in the
Reaction Control Systems (RCS) and the Orbital Maneuvering Systems (OMS). PRS

1 An intelligent system is a computer system that uses information intelligently to achieve goals. Commercial
development environments for intelligent systems often include advanced graphical user interface capabilities.
2 Formerly the Office of Aeronautics, Exploration, and Technology (OAET).
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dynamically constructs fault diagnosis and correction plans (based on pre-existing

malfunction procedures) and monitors the execution of those plans using telemetry data.

Cooperating Expert System (CoopES): a distributed system that demonstrates

cooperation among multiple expert systems performing real-time fault management. CoopES
consists of two fault management expert systems, and the software necessary for these sys-
tems to communicate and coordinate their activities. Both expert systems were developed
previously as stand-alone systems for managing failures in the Space Shuttle Electrical Power
System (EPS) and the RCS, respectively.

Extended Real-Time Failure Environment Analysis Tool (FEAT) (ERF): a fault

management tool developed for both Space Shuttle and Space Station ground flight
controllers. ERF assists the flight controller in determining failure causes (fault isolation),
failure propagation paths, and failure effects (or impact assessments). ERF extends the

capabilities of FEAT by providing automated real-time analysis of failure models using
telemetry data.

Payload Deployment and Retrieval System (PDRS) Decision Support System

(DESSY): a fault management system for the Space Shuttle Remote Manipulator System

(RMS). DESSY assists the PDRS flight controllers in monitoring status and detecting faults
for two RMS subsystems, the Manipulator Position Mechanisms (MPMs) and the
Manipulator Retention Latches (MRLs). Because DESSY was also part of the first study, a
description is included of some problems with the original design and how these problems
have been resolved.

Fuel Cell Monitoring System (FCMS): a fault management system for the Space Shuttle
fuel cells and associated power busses. The FCMS is used by the Electrical, Environmental,
Consumables, and Mechanical Systems (EECOM) flight controllers to assess the status of the
fuel cells and power busses, and to recommend crew and flight controller actions based on
this assessment.

Information about each system was gathered by interviewing system developers and users, and by
reading related papers and documents. Using this information, a case report has been written for
each intelligent system in the study. Each case report includes a description of the intelligent sys-
tem functions and the associated space domain system, an analysis of how the human interacts
with the intelligent system during operations, an evaluation of the user interface capabilities pro-
vided to support such interaction, and a description of the methodology used to design and build
the intelligent system.

1.3 Organization of Document

Section 1 of this report describes the objectives of the second case study and introduces the cases
selected for that study. Sections 2 through 6 contain the case reports for each of the five systems
studied. A reference list summarizing the documents used in this study is also attached.

1.4 References

Malin, J., D. Schreckenghost, D. Woods, S. Potter, L. Johannesen, M. Holloway, and K.
Forbus. Making Intelligent Systems Team Players: Case Studies and Design Issues. Volume 1.

Human-Computer Interaction Design, Volume 2 Fault Management System Cases. NASA Tech-
nical Memorandum 104738. Houston, TX: NASA/Johnson Space Center. October 1991.
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Malin, J., and D. Schreckenghost. Making Intelligent Systems Team Players." Overview for

Designers. NASA Technical Memorandum 104751. Houston, TX: NASA/Johnson Space
Center. June 1992.
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SECTION 2

PROPULSION PROCEDURAL REASONING SYSTEM

2.1 System Description

The PRS is a tool developed for creating plans to achieve specific goals and monitoring plan exe-

cution. The PRS tool has been used to develop a fault management system for use by the Space

Shuttle propulsion flight controllers 3. The purpose of this system is to assist in identifying and

recovering from faults by constructing plans (based on malfunction procedures 4) and monitoring
the execution of those plans. Hardware states and status provided by fault detection software are
used to select "pieces" of pre-defined procedures. These pieces of procedures are used to build a
plan for isolating and recovering from a specific fault. The plans that are built are communicated

by the flight controller to the crew, via the voice loop. The system then monitors the telemetry data
for indications that the steps of the plan have been executed. Although a separate fault detection
system is planned, the current system includes embedded fault detection.

The PRS tool permits several instances of the basic system to run in parallel. The design for the
propulsion system includes six instances of the PRS software running in parallel, corresponding to
five instances for managing faults in the propulsion subsystems and one instance for managing the
user and data interface for all other instances. The specific propulsion subsystems being managed

include (1) the fight aft, left aft, and forward RCS, (2) the fight and left OMSs 5. To date, this
application deals only with the RCS system and addresses 17 known RCS single failure conditions
(corresponding to approximately 10 single malfunction procedures).

The ability of the propulsion application of PRS to generate plans and recommend procedures is
unique among the systems in case study. In other cases (such as CoopES, section 3), the only
real-time planning activity is selecting among pre-defined plans. PRS supports dynamic replan-
ning by creating new plans on-the-fly from existing "pieces" of procedures. PRS also supports
creating new "pieces" of procedures, resulting in completely new procedures. This capability
helps flight controllers construct contingency workarounds in real time.

Another unique aspect of PRS is the ability to respond to situations in which multiple faults occur.
The ability to manage multiple faults is not typical in diagnostic systems, and is not included in
Space Shuttle malfunction procedures. This application of PRS can respond to multiple faults by
(1) having multiple fault management tasks in progress (although executed sequentially) for a
single instance of PRS, and (2) running multiple instances of PRS in parallel. The system can also
assist the flight controller in creating new procedures for multiple faults (e.g., altering procedures
to accommodate fault interaction).

The propulsion application is built using a version of PRS written in Common LISP on a Sun
workstation. This version of PRS communicates using TCP/IP and has an XWindows interface.
A port to the newest version of PRS, written in C with a Motif style interface, is planned in the
near future. This port is expected to solve some of the real-time performance problems seen with

3 The propulsion application of PRS is planned for use by both the Propulsion System Engineer (PROP) the Flight

Control Room and the PROP controllers in the Multi-Purpose Support Room (MPSR).
4 Throughout this report, aprocedure refers to a plan template that includes possible courses of action in

operational situations (e.g., a malfunction procedure addresses fault situations). A plan refers to a single course of
action, based on relevant procedures and selected to address a specific set of conditions.
5 The RCS modules provide low levels of thrust for controlling the attitude of the Space Shuttle. The OMS provide
much higher levels of thrust for maneuvering the vehicle.
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theLISP version. Moreover,LISPis notapprovedfor theMissionControlCenter(MCC)
workstations.

2.2 Intelligent System and Functions

The propulsion application has a multi-agent architecture. It consists of six instances of PRS (or

agents) that run in parallel. Five of these instances manage faults in the propulsion subsystems
(RCS, OMS). One instance manages the interface to the data and the user, including (1) handling
sensor data, (2) recommending control actions using effectors, and (3) checking for failed sensors
and effectors. Although each instance has a separate meta-level reasoner that coordinates its activi-

ties, only the human supervises the interaction of instances. Instances can influence each other by
changing facts in the shared database, or by directly communicating. Instances operate asynchron-
ously and communicate by message passing (e.g., to request activation of a knowledge area [KA]
or goal). Response to a request by an instance depends on the reliability of the requester, the type
of message, and the state of the receiving instance (its beliefs, goals, and intentions). Most of the
interaction among these instances occurs with the interface instance. The subsystem instances
operate in relative isolation (each has its own goals, KAs, intention graph, and meta-level rea-
soner).

An instance of PRS consists of a database of facts and beliefs about the monitored process, a set of

goals to be achieved, a set of plans used to achieve these goals, an intention structure containing all
plans in progress, and an interpreter to construct the intention structure and to handle prioritization
of plans and changes in priority. A PRS instance operating in real time includes the following:

Database

The database is the shared memory for all PRS instances. It contains known facts based on
telemetry or user input, and the current beliefs of the system. The database includes state and
status descriptions as well as structural information. Information in the database is provided
by the data server (transforms numeric telemetry data to symbolic values) or the user, or is
derived by an instance. Facts and beliefs are updated by the system as available. Values in
this database trigger the selection of plans.

Goals

Goals are descriptions of desired system behaviors or crew tasks. Every goal has an associ-
ated set of actions derived from a piece of a malfunction procedure (called a knowledge area)

that is explicitly declared to be the achiever of that goal. A goal is successfully achieved
when the set of actions is successfully completed. As goals are selected, they may also be
tested (i.e., determine if goal has already been met), maintained (i.e., held constant while
other tasks are executed), or placed in a waiting state (i.e., delayed until specific conditions
become true).

Knowledge Area
A KA in PRS is a set of actions for achieving a specific goal. For this application, KAs

represent the pieces of malfunction procedures used to construct plans. Each KA is repre-
sented as a frame consisting of a body, an invocation, a context, and optional slots. The

body specifies procedure steps (an example of a KA is shown in figure 2-1; procedure steps
are on the arcs of the graphic). A KA associated with an active goal is executed when both
the events in the invocation slot occur and the conditions in the context slot are true of the

current state. Use of the optional slots (effects, goal achiever, properties) vary depending on
what items are needed for execution.
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Open or Close Valve

INVOCATION:

(#FACT(REQUEST $ASKER (!(POSITION $v $POS))))

CONTEXT:

(AND (#FACT (SWITCH $V $S))

(#FACT (TALKBACK $V ST)) E 5-'--I_

(?(-- $COND NIL))

EFFECTS:

NIL

GOAL ACHIEVER?: (!(SEND
T INTERFA

PROPERTIES:

NIL

DOCUMENTATION:

This KA is used to open or close a valve.

Note the timed wait condition,

Note that this KA is NOT called when you want

to put a switch in GPC. This KA is called when

you want to get the VALVE in open or closed

position.

(!(POSITION_$S $POS))

(!(TIMED-_ AIT-AND-SET

(POSITION SPOS) Z0, $COND))

T))

,MESSAGE $ASKER(FAILED I

_-E(!(POSITION $V $POS))))) l
I

(!(SEND-MESSAGE $ASKEP_ACHIEVED

INTERFACE(!(POSITION SV ISPOS)))) )
r

} r.,
(#(POSITION

r

_;V $POS))

)

Figure 2-1. Example of a Knowledge Area.

Intention Graph
The intention graph represents the tasks that the system expects to be executed (either imme-

diately or later). The term task refers to the plans (KAs) selected by the System Interpreter to
achieve an active goal. Successful completion of a task results in achievement of the goal.
At any given time, an intended task may be executing, waiting for activation conditions, or
delayed (suspended or deferred). If a more urgent goal arises, the ongoing task can be sus-

pended and a task activated to achieve the new goal. Figure 2-2 illustrates an intention graph.

Interpreter

The Interpreter is a meta-level reasoner that uses system beliefs and goals to select plans
(KAs) and to initiate plan monitoring for the tasks specified in the intention structure. As
plans are executed, and mission operations continue, state changes result in new goals being
set and new beliefs being derived. The Interpreter manages changes to the intention structure
resulting from these changes in beliefs and goals. It also determines the priority of pending
tasks (which task to work on next) based on these changes.
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_Switch Dilemma (Barberpole)

(POSITION FRCS-PROP-TK-ISOL-12-TALKBACK BP) I

Meta Selector (intend-all-safety-before) Switch Dilemma (Closed) I

I >(s°AK (###))<- r_,-I (POSITIONFRCS-PROP-TK-ISOL-12-SWITCHEL)
I

Open or Close Valve I

(REQUEST RCS (! #))1

Figure 2-2. Example of an Intention Graph.

Figure 2-3 illustrates the typical architecture for a single PRS instance. The parts of the system in
the shaded boxes are active during operational use of the system. The non-shaded portions of this

figure illustrate how the PRS is configured for software development and testing.

Structure Editor KA Editor I

Monitor t_ Application(simulator)
_1_ Command

Generator I

Figure 2-3. Typical Architecture of PRS Instance.
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The intention graph represents the composite set of plans built to achieve all active goals. This
graph is made up of multiple planned tasks, each associated with a goal. Although multiple tasks
can be pending, only one task (and associated KA) is executed at a time for an instance of PRS.

Executing a KA is equivalent to monitoring for evidence in data that the steps of the recommended
plan are being executed. A KA is executed by evaluating the logic expression associated with each
step of the plan. If the logic expression evaluates true, the plan step has been successfully com-

pleted and the system begins monitoring the next step (moves down the KA graph in figure 2-1).
If the logic expression evaluates false, the plan step has failed, and an alternative path is tried
(move up the KA graph in figure 2-1). To accommodate for steps executed out of order, PRS
checks whether goals have been satisfied before moving to the next plan step. To keep the user
informed of the situation (success or failure), user status messages are included in each KA.

PRS is a reactive system that can respond to situations that develop in unexpected ways (where
expectations are based on the malfunction procedures). For example, plan steps do not have to be
executed in an exact order, as long as the goal is achieved. To accommodate changes in situation
(as represented in goals and beliefs), a KA being executed can be (1) interrupted by a new KA

corresponding to a higher priority goal 6, (2) suspended until specific conditions apply, and (3)
aborted when necessary. The intention graph is changed if a new task (and goal) takes precedence
over an executing task. The original task (i.e., all the KAs required to achieve a goal) will be
placed in a wait state until the higher priority task finishes. When the higher priority task is com-
pleted, the original task will be re-evaluated before resuming activity, to ensure that it is still valid
and necessary. If it is not needed, it is deleted.

Telemetry data are processed prior to use in PRS. A data server converts numeric data to symbolic
values. Since only changes are transmitted to PRS, this reduces the amount of information that
must be processed and improves system performance. It also permits compensating for noisy
data. The Interface instance also assists in handling data by monitoring sensor status and trans-
forming raw data (transducer readings) into needed parameters (e.g., pressure). Loss of data at
loss of signal (LOS) is handled by the data server. Since data are not changing during LOS (except
for cyclically repeating the last few samples of data), the server is quiescent, and PRS waits to
resume processing when information becomes available at acquisition of signal (AOS). If
monitoring a plan with timed operations that expire during LOS, however, PRS either aborts the
process being timed or issues a warning to the operator about the timer expiring. One of the draw-
backs of making LOS transparent to the system is that it may be useful for the system to recognize
that LOS has occurred (e.g., system can expect to miss evidence about plan execution during
LOS).

2.3 Human-Intelligent System Interaction Functions

PRS performs two basic activities: planning crew and flight controller activities in response to
anomalies, and monitoring the execution of those plans. Although PRS can perform these activi-
ties autonomously, the human operator is responsible for supervising the accomplishment of these
activities, and redirecting or overriding the intelligent system when needed. The operator can in-
tervene in planning and plan monitoring in the following ways:

• Specify the priority of a task in the intention graph (and thus the order in which tasks are
executed)

• Select among a set of valid plans (KAs)
• Add new goals
• Alter facts used by PRS
• Delete parts of the plan by removing a KA from intention graph

6 Goal priorities are predefined, but can be changed by the flight controller in real time.
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• Abort, restart, or suspend 7 execution of a KA
• Shut down an instance of PRS

To assist the operator in performing these activities, PRS provides information about goals (and
their priorities), plans or KAs, tasks in intention graph (including task ordering), messages about
status of plan execution, facts, and system beliefs. The use of this information and capability
when interacting with the intelligent system is discussed below.

PRS supports flight controllers in replanning during a mission. Although the system automatically

replans when goals or beliefs change, the operator can influence this replanning process. The op-
erator can directly change goals used to select plans, or can provide information about the moni-

tored process that changes beliefs and goals. The operator can alter the priority of goals, resulting
in changes in task ordering on the intention graph. If PRS generates more than one valid plan, the
operator can select among plans. The operator can also override the default plan (a form of manual
replanning) by aborting, restarting, suspending, or deleting a KA on the intention graph.

Contingency situations require replanning with special workaround procedures. In a contingency
situation, existing malfunction procedures (and the KAs constructed from them) cannot resolve the
anomaly in the monitored process. New procedures must be constructed during the mission. PRS

supports responding to contingency situations by permitting the operator to generate new KAs
(corresponding to new workaround procedures) on-the-fly and use them immediately in planning.

To monitor the execution of the plan it has suggested, PRS looks for evidence in the telemetry data
that each step of the plan (KA) has been executed. If the expected evidence is found, the operator
is informed about the success of the activity. If data indicates a deviation from the plan, the opera-
tor is notified. If there is no evidence in the data that the crew has begun executing the plan, the

system reminds the operator that it is "still waiting" (after a reasonable amount of time). The op-
erator can respond to either of these problem situations by notifying the crew of the problem, or by
altering or inten'upting the plan (abort, restart, suspend, or delete a KA; change a goal). If the
operator takes no action, PRS continues to monitor the selected plan until data indicates that the
associated goal has been reached, or that changes have occurred requiring a new plan. One of the
difficulties of plan monitoring is that plans are not always executed as specified (e.g., reverse the
order of steps, if order is not critical). PRS accommodates such situations by detecting and notify-
ing the operator when an active goal is satisfied, and removing the appropriate KA from the inten-

tion graph.

Each PRS instance supports the operator in supervising its activities. It provides the operator with
visibility into its knowledge base by displaying KAs (presented graphically or in text) and the
intention graph. The operator can also search the knowledge base to identify which KAs might

respond to a specified goal change or fact change. The results of planning activities are reflected in
the intention graph, which can be monitored while the system runs. To keep the operator informed
about plan monitoring activities, the intelligent system sends messages describing the plan step it is
currently monitoring (i.e., its current hypothesis) and why it is concerned with this plan (i.e., the

goal that will be achieved if the plan executes successfully).

To assist in supervising intelligent system activities, a representation of the plans of each instance
is shared with the human supervisor. The human monitors this representation as plans are
executed. This assists the operator is establishing expectations about what will happen in the

monitored process (based on the plan) and in understanding situations as they develop. It also
illustrates the ongoing activities of each instance in the context of the monitored process situation.
This design has some limitations, however. The data used to draw conclusions are not evident,

7 The interval of suspension can be delimited either by time or event.
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and there is no integrated representation of plans across instances, which means there is no support
for understanding the overall situation and how instances interact in response to that situation.

Each PRS instance also supports the operator in intervening in its activities. The operator can
interrupt intelligent system monitoring activities by suspending a KA. The operator can redirect the
intelligent system (1) by informing the system of new goals, new facts, or even new KAs that
affect its planning activities, or (2) by manually changing the plan to alter its plan monitoring ac-
tivities. The operator can even selectively override the intelligent system when it is in error. The
knowledge base of this application is partitioned into six instances of PRS, one each for the five

subsystems of propulsion system and one for handling the data interface. Shutting down an in-
stance of PRS is equivalent to disabling a portion of the knowledge base. This requires that the
operator manually take over the planning and plan monitoring activities for that subsystem.

PRS provides limited support to the operator in supervising multiple instances. Managing six
instances requires monitoring six sets of information. There is no way of monitoring the activities
of all instances at one time, and interaction among instances is not clearly represented. As a result,
it is difficult for the operator to gain an understanding of the overall situation and to track parallel
activities and changes in those activities. To support human supervision of multiple instances,
information from these different instances must be integrated for use by a single operator (e.g.,
merge plan information into a single intention graph). Important relationships among this informa-
tion must be identified for the operator (e.g., failures that affect multiple systems, such as power
failures) and the overall situation must be represented, including interaction among instances. The
operator must be able to effectively monitor and manage multiple lines of reasoning in parallel
(e.g., keep track of which instance provides information, or which instance has been informed of a

fact; shift focus of attention among instances). These type of issues were being considered by the
design team at the time of the interviews.

2.4 Supporting User Interface Capability

User interface design for the propulsion application of the PRS was just beginning when the case
interviews were done. At that time, the PRS development user interface was the only user inter-
face design available. Although the final design will change, it is likely that much of the PRS
development user interface design will be retained in the final design. Thus, the PRS development
user interface is described in this section, particularly how it supports the operator in managing the
monitored process and in supervising the intelligent system. This discussion focuses on the op-
erational use of the PRS user interface instead of its use for software development and testing.

The workspace layout for the PRS development tool consists of the following display areas:

• Control Window: provides the user with capability to control the system and configure the
user interface

• IO Window: posts messages from the intelligent system
• Text Trace Window: shows messages and graphics about plan execution
• Command Window: permits text-based user input to the intelligent system

Each of these areas is discussed below. Figure 2-4 shows the workspace of the PRS development
user interface.
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adapted from PRS User Guide, 1991

Figure 2-4. Workspace of the Procedural Reasoning System.

The Control Window is located in the upper left of the workspace. This area provides mouse-
selectable menus for controlling and configuring PRS. Control capability used during operations

includes (1) loading and running the default application, (2) controlling instances of the PRS (start,
stop, reset), (3) monitoring the intention graph, KAs, and instances, and (4) adding new goals,
facts, and KAs. Configuration capability includes (1) selecting a PRS instance to be associated
with the user interface, (2) specifying the display mode for the procedure trace, and (3) selecting
the input mode for the Command Window. Capability provided by the menu items is shown in
figure 2-5.

2-8



Initialize Processes

Processes

Database

PRS Menu

Trace Menu

Mode Menu

adapted from PRS User Guide, 1991

Load ->

PRS ->

Add New FACT

Add New Goal

_tication KAs

)lication and Default KAs

Default Mode

Mode

Consult Mode

Goal Mode

Fact Mode

Relevant KA Mode

Reset Command Pane

Reset I0 Pane

Reset Text Trace Pane

Cache Database

Decache Database
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Figure 2-5. Menu Hierarchy of the PRS Control Window.

The IO Window is located in the upper right of the workspace. Input/output messages from the
intelligent system axe posted in this scrolling window. These messages include requests for infor-
marion from the operator, suggestions for procedures to be performed, and warning messages
about violations of procedure steps. See figure 2-6 for an example of the IO Window.
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Figure 2-6. Examples of the IO Window, Text Trace Window,
and Command Window.

The Text Trace Window is located in the middle of the workspace. This region provides informa-

tion for monitoring the execution of plans. Information about plan execution can be viewed in both
a message format and a graphics format. A scrolling message window displays messages describ-
ing the plan step being monitored (i.e., what the intelligent system is doing) and the goal to be
achieved (i.e., why this plan is being executed). These messages are listed in the order of occur-
rence. A scrolling graphics window displays a graphical version of the plan steps being executed.
Since the graphic is usually larger than the window viewport, the view automatically shifts to show
the portion of this graph being monitored. Both the message window and graphics window can be
viewed simultaneously. See figure 2-6 for an example of the Text Trace Window.
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The graphic of plans in the Text Trace Window is an example of a representation shared by the
operator and the PRS instance (see also section 2.3). This graphic is monitored by the operator as
plans are executed. It illustrates the monitored process situation as it develops and shows how the
intelligent system responds to that situation. There are some challenges in using this graphic
operationally, however. There is no integrated view of plans across PRS instances. Large proce-
dures can be difficult to follow, since the entire procedure cannot be displayed at one time. Addi-
tionally, the abrupt movement through the graphic as the procedure is executed can be difficult to
track visually.

The Command Window is located at the bottom of the workspace. This scrolling text window is
used to enter commands to PRS. A variety of types of commands can be issued. To specify the
desired type of command, a command mode is selected from the Control Window. The following
command modes are provided:

• default: enter LISP command

• message: send message to PRS instance

• consult: request all facts matching expression entered

• fact: assert a fact

• goal: establish a goal

° relevant KA: request all KAs responding to the fact or goal entered

PRS automatically logs the messages displayed in the IO Window, the Text Trace Window, and
the Command Window. These messages are not accessible from the screen, but can be saved to a
file for use after operations are complete.

As mentioned in section 2.3, information from the multiple instances of PRS has not been inte-
grated for use by a flight controller during operations. User interface issues associated with
supervising multiple instances of PRS include (1) integrating the displays associated with these
instances into a single workspace, (2) navigating through this workspace, (3) focusing operator
attention on instances and information describing the situation, and shifting attention when the
situation changes, (4) illustrating information relationships that span instances, (5) tracking which
instance is being viewed, and (6) effectively managing real estate usage (such as displaying graph-
ics of KAs that are larger than the window viewport).

2.5 Design Process

The PRS was developed to investigate artificial intelligence (AI) applications for Space Station

Freedom. This system was developed by SRI International (M. Georgeff 8, PI and F. Ingrand)
and funded as an AI RTOP by the Office of Aeronautics and Space Technology (OAST). Initial
development of the system was done at the Ames Research Center. Within the last year, the soft-
ware has been transferred to Johnson Space Center (JSC) for operational evaluation under the

Real-Time Data System (RTDS) project. PRS differs from most RTDS systems because it does
not use rule-based technology and does not use the RTDS data acquisition software.

This system was developed as a proof-of-concept prototype for the Space Station Freedom Pro-
gram. The user community for this system consists of Space Shuttle flight controllers (M.
Barry/RSOC). These users have played an active role in system development. They have served
as the domain experts for the RCS. This was possible because similar RCSs are used in both

8 M. Georgeff formerly worked for SRI International. He is currently at the Australian AI Institute, where he
continues to work on the PRS project.
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programs.Theyhavedecomposedtheselectedmalfunctionproceduresinto reusable"pieces"to
derivetheKAs. Insteadof holdingtraditionalknowledgeacquisitionsessionswith thesoftware
developers,theseflight controllersusedtheKnowledgeEditorin PRSdirectlyto representproce-
duralinformationin electronicform. TheyalsousedtheStructureEditor to representthestructure
of themonitoredprocess9. Theyarecurrentlyevaluatingthesystemin representativeoperational
scenariosusingdatafrom theSingleSystemTrainer.

2.6 Study Method

Information about PRS was obtained from demonstrations and interviews with Matt Barry in

March (6, 20), April (23, 28), and August (28) of 1992. The case data sources cited in section 2.7
were also used, and the figures shown throughout section 2 were derived from figures included in
these case data sources.

Project Representatives

• Matt Barry (Rockwell Space Operations Company, RSOC)

2.7 Case Data Sources

Georgeff, M., and A. Lansky. A System for Reasoning in Dynamic Domains: Fault Diagnosis

on the Space Shuttle. SKI International, Technical Note 375. January 1986.

Georgeff, M., and F. Ingrand. Decision-Making in an Embedded Reasoning System. Proceed-

ings of the Eleventh International Joint Conference on Artificial Intelligence. Detroit, Michigan.
1989.

Georgeff, M., and F. Ingrand. Monitoring and Control of Spacecraft Systems Using Procedural

Reasoning. Proceedings of the Space Operations, Automation, and Robotics Workshop.
Houston, TX. July 1989.

Georgeff, M, and F. Ingrand. Real-Time Reasoning: The Monitoring and Control of Spacecraft

Systems. Proceedings of the IEEE Sixth Conference on AI Applications. Santa Barbara, CA.
March 1990.

Georgeff, M., and F. Ingrand. Research on Procedural Reasoning Systems, Final Report -
Phase 2. SKI International. March 1990.

Ingrand, F., M. Georgeff, and A. Rao. Embedded Diagnostic Systems, submitted to IEEE

Expert.

9 This approach also enables quick upgrades of the knowledge base when the system configuration changes.
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SECTION 3

COOPERATING EXPERT SYSTEM

3.1 System Description

The CoopES is a distributed system developed to demonstrate cooperation among multiple expert
systems performing real-time fault management. CoopES consists of two expert systems for man-
aging faults in different systems of a space vehicle, and the software necessary for these systems to
communicate and coordinate their activities. Both expert systems were developed previously as
stand-alone systems for detecting, diagnosing, and recovering from failures in the Space Shuttle
EPS and the RCS, respectively. Simple simulations of the Space Shuttle RCS and EPS are built
into each expert system to provide data for demonstration and testing.

Unlike most systems in the case study, CoopES was designed to operate without significant user
involvement. CoopES was included in this study to investigate how interaction among distributed
software agents provides insights into interaction among humans and such software agents. In
effect, the human is being considered as another agent in a distributed software system.

CoopES differs from other cases in another way. Most systems in the case study are planned for
use by flight controllers during space operations. CoopES was never intended for operational use,
and was built as a proof-of-concept prototype. The technical challenge for CoopES was to
demonstrate reliable communication and cooperation among distributed expert systems developed
for stand-alone use.

Both the RCS and EPS expert systems are rule-based systems developed using SCLIPS. The user
interface to the RCS expert system was implemented using TAE and the user interface to the EPS
expert system was implemented using Sunviews. The remainder of the software was developed
using SCLIPS, C, and Unix, with one exception. Software for coordinating these systems (called
the System Monitor) is a frame-based system built in LISP with a user interface built in C and the

XWindows system and communications software built using LISPlink. The CoopES software
runs on multiple Unix workstations (typically Sun workstations) networked together.

3.2 Intelligent System and Functions

The CoopES architecture is a multi-agent architecture, where agents are software processes that
reason about local and global facts and plans, and that communicate with other processes about
these facts and plans. Agents are organized hierarchically, with a supervisory agent coordinating
the activities of two fault management agents. These subordinate agents pass status information
and local plan requests to the supervisory agent, which can approve these plans or change them as
needed to form a global plan. Other agents are provided to monitor agent health, to configure
agents, and to establish agent communication. For the purposes of demonstration, an agent is also
provided for introducing faults into the space vehicle system. These agents communicate by pass-
mg messages. A blackboard is used for communication between the fault management agents and
their associated simulations. CoopES consists of the following agents:

System Monitor

The System Monitor (SM) agent coordinates the activities of the RCS and EPS expert
systems. It receives plans selected by these two intelligent agents, coordinates the plans
received, and monitors the execution of each step in the overall plan. The user interface to
the SM, the SMInterface, receives messages from the SM about plan execution and displays
a graphical representation of those plans.
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Reaction Control System

The RCS expert system (called PropSys) manages faults in the RCS subsystem of the Space
Shuttle propulsion system. It is a rule-based system with approximately 300 rules. The
RCSOI is the user interface for graphically displaying information from this expert system.

A simple simulation of the RCS is embedded in the expert system for use in demonstration
and testing.

Electrical Power System
The EPS expert system (called EpSys) detects faults in the Space Shuttle electrical power
system. It is a rule-based system with approximately 200 rules. The EPSOI is the user inter-
face for graphically displaying information from this expert system. A simple simulation of
the EPS is embedded in the expert system for use in demonstration and testing.

Heartbeat

This agent monitors all other agent processes running in the system, and restarts any agent
that ceases functioning or loses the ability to communicate.

Murphy
This agent is used to introduce monitored process faults into a scenario-based demonstration

of CoopES.

Server

The Server agent uses a preset configuration file to determine the allocation of agent pro-
cesses to machines, launch these agents, establish appropriate system environments, and

establish agent-to-agent communication.

Configuration Manager
The Configuration Manager (CM) agent provides the ability to configure, launch, and control
the different hardware and software components of CoopES demonstrations. This agent
includes a graphical user interface.

The typical agent configuration for CoopES is shown in figure 3-1.

The CM is used for graphically building an agent configuration and to launch the agent processes
specified in this confgurafion. Configurations pre-defined as demonstration scenarios include the
following:

• Reactive Planning (no agent cooperation)
• Sequential Diagnostic Action (hierarchy of agents with sequential events)
• Overlapping Diagnostic Action (hierarchy of agents with overlapping events)

The Server starts each agent process specified in the configuration and provides each agent with
default start-up data. It then starts the Murphy agent, which introduces faults into the monitored
process simulations that correspond to the selected scenario. At this point, the Server has com-
pleted its activities.
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Figure 3-1. Typical CoopES Configuration.

Once the agent processes have been configured and launched, the PropSys and the EpSys begin to
monitor simulated RCS and EPS parameters, respectively. As problems are introduced into the
simulated RCS and EPS using the Murphy software, these fault management agents detect prob-

lems in their respective domains 10. When a problem is detected, the fault management agent

selects a local recovery plan from a pre-defined set of plans (scripts) 11. These local plans (i.e.,
plans intended for execution) are merged by the SM into a global plan agenda. Each fault man-
agement agent executes the plan steps relevant to its monitored process.

Throughout operations, the Heartbeat agent manages the health of all agent processes. Health
monitoring consists of ascertaining that all agents are still active by periodically requesting a
response from them. If an agent fails to respond, Heartbeat assumes that the agent is no longer
"alive," and starts up a new agent on an available platform.

Synchronizing the information communicated among distributed agents is an important issue for
CoopES. Concurrent agent processing and network transmission delays can result in stale infor-
marion being provided to an agent, or in information sequences that are received out of order
(obsolete or inconsistent information). These information synchronization problems are solved in
CoopES by limiting agent communication to message passing through the supervisory agent (the
SM) and by using communication protocols. Synchronization between PropSys, EpSys, and their
associated simulations was not changed from their original designs, which embedded the simula-

tion in the expert system agent with facts shared between them 12.

10 The detection of faults by expert systems is based on fixed thresholds defining nominal operating conditions.

11 All CoopES plans are static and are derived from the malfunction procedures for the Space Shuttle RCS and EPS.

12 This design eliminates data acquisition problems, such as time synchronizing data, but makes agents less flexible

(can't change data sources easily).
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3.3 Human-Intelligent System Interaction Functions

Because CoopES was designed for autonomous operation, most of the human interaction with the
system occurs prior to starting it. Typical human tasks include building fault scenarios and config-
uring the system. At run time, human involvement is limited to observing the intelligent software

agents while operating. Information from three different agents is monitored during system
operations:

• SM: status and activities of agents executing the plan

• PropSys: state and status of RCS space system
• EpSys: state and status of EPS space system

Information from these distributed agents has not been integrated to assist the human in monitoring
fault situations (i.e., three screens of information are provided on three different hardware plat-

forms).

Although CoopES is designed for limited interaction with humans, many observations and issues
concerning interaction among inteltigent software agents are relevant to interaction among humans
and software agents. The types of information needed and activities performed by the supervisory
agents in CoopES (specifically the SM and Heartbeat) are very similar to the information require-
ments and activity descriptions for humans supervising intelligent systems (Matin and Schreck-
enghost, 1992). Issues related to supervising intelligent software agents are discussed in the
remainder of this section, particularly (1) coordinating agents using plans, (2) solving agent com-
munication problems, and (3) managing agent errors, including assessing agent (and overall

system) health.

The supervisory agent in CoopES (SM) coordinates subordinate agents (PropSys and EpSys) by
managing the activities that these agents perform (i.e., managing agent plans). Each subordinate
agent proposes a local plan based on its assessment of the failure situation. Before executing these
plans, the supervisory agent identifies and resolves global issues in local plans. Specific activities
include identifying resource conflicts and dependencies in these plans (e.g., power bus must be
good for RCS leak recovery), and selecting different plans that accommodate these dependencies.
To modify and combine local plans into a global plan agenda, the supervisory agent needs infor-
marion about the vehicle system monitored by the subordinate agent (e.g., health, availability,

configuration, redundant capability), fault diagnoses by the subordinate agents, and agent status
(from Heartbeat). As part of coordinating activities, the supervisory agent monitors the execution
of the plan steps by the subordinate agents to verify that these steps are completed. If a plan fails
to complete, performance of the multi-agent system can be impacted.

The ability to coordinate agents and execute plans can be impaired by communication failures. The

CoopES project identified a number of communication failures caused by problems in synchroniz-
ing or transmitting information (see section 3.2). These failures can result in agent errors, where
the receiving agent misses information, or reasons with information that is obsolete, inconsistent,
or out of order. For example, in one demonstration scenario an incorrect plan was selected by the
SM based on inaccurate information due to a communication failure 13. A common response to

communication failure is re-transmitting information. With asynchronous communication, this can
result in situations where the transmitting agent repeats the transmission unnecessarily (i.e.,
doesn't wait a sufficient amount of time for a response indicating the transmission was received).
Problems due to repetitive messages can impact performance of the multi-agent system. For ex-
ample, in one scenario the PropSys and the SM engaged in a meaningless dialogue (called a

13 SM did not wait for activities altering system state to complete, and state information to stabilize, before using
the information to select a plan
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Navajodialogue14)in whicha faultwasrepeatedlydiagnosed,bringingCoopESeffectivelyto a
halt. Repetitivemessagesin CoopESarehandledby modifyingagentreasoningto preventthem
from beingissued.A relatedproblemoccurswhenanerroneousagentfloodsanotheragentwith
information(calledarunawayagent).Thisproblemis controlledin CoopESby limitingcommuni-
cationvia CPUallocation(i.e., adecouplingcoefficientlimits howmuchCPUis allocatedto
communication).

Mostagenterrorscausedby communicationfailurearemanagedin CoopESby designingagentsto
preventerrorsfrom occurring(e.g.,donotrepeatmessages)and,whentheydooccur,to have
limited impact(e.g.,limit communicationfrom runawayagent).Agenterrorsresultingin total loss
of communication,however,aredetectedandmanagedin realtimeby theHeartbeatagent.Loss
of communicationisdetectedbyperiodicallyforcingeachagentto verify it cancommunicate
(essentiallya low-levelassessmentof thehealthof individualagents).Performanceproblems(like
themeaninglesscommunicationof theNavajodialogue)havebeenobservedin CoopES,butare
notdetectedandmanagedin realtime. Methodsfor evaluatingbothindividualagenthealthand
overallsystemperformance(e.g.,detectNavajodialogue)arerequiredto assessthehealthof
multi-agentsystems.

Managingagenterrorsincludesrecoveringfrom thoseerrors.Heartbeatrespondsto alossof
agentcommunicationby reallocatingtheagent'stasksto anotheragent.It assumesthattheerro-
neousagentisnot repairable,andcreatesanewagentprocess.Reassigninganagent'stasks
includesestablishingcommunicationbetweenthenewagentandotheragentsin thesystem,and
startingthenewagentfrom adefaultconfiguration.Suchtaskreassignmentwouldbemoreeffec-
tive if thenewagentcouldbegivensomeunderstandingof ongoingfault situations(e.g.,knowl-
edgeof previouseventsprovidescontextfor interpretingcurrentevents).

3.4 Supporting User Interface Capabilities

As discussed in the previous section, the human plays a limited role in CoopES. User interface
displays are only provided for the purpose of demonstrating autonomous operations. The CoopES
user interface consists of three operational displays and one system configuration display, corre-

sponding to one display per intelligent software agent 15. The workspace of CoopES consists of
the following displays shown concurrently on four workstations:

• SMInterface: displays agent activities as they occur and the status of agents executing plan
steps

• EPS interface (EPSOI): displays state and status of the EPS

• RCS interface (RCSOI): displays state and status of the RCS

• CM: provides capability to configure and start up software agents

Each display has a unique format. In fact, the original user interfaces developed for the stand-
alone expert systems have been used virtually without change. These separate displays have not
been integrated into a single user interface because the system was not designed for use by a

14 The Navajo dialogue is a communication failure where multiple agents become trapped in a repeating cycle of
purposeless communication and action (similar to an endless loop in traditional software). The name of this failure
refers to the pattern observed on the user interface during such interaction, which resembles the pattern on a Navajo
blanket. In this example, a fault was diagnosed and a plan modification was suggested, but could not be completed,
before the fault was re-diagnosed.
15 Heartbeat is the only exception to this. Information from Heartbeat is displayed on SMInterface.
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human(exceptto setupandstartsystem).Figure3-2illustratestheCoopESmulti-screen
workspace.Eachof thesedisplaysis describedbelow.

System

Manager

PropSys

Configuration
Manager

EpSys

Figure 3-2. The Workspace of CoopES.

The SMInterface is the only display in the case study that was designed for the purpose of manag-
ing intelligent software agents. It provides information for monitoring agent activities and plan
execution. It illustrates activities performed by all active agents concurrently (using a timeline) and

shows plan steps as they are executed. These activities include supervisory activities performed to
manage agents (e.g., reallocate tasks to new agent). It also provides a health assessment of all
agents. Patterns of activity on the timeline can indicate system performance problems (e.g.,
Navajo dialogue is characterized by a repeating pattern of interaction). Agent communication is
illustrated by explicitly marking messages as events on the timeline. A history of agent status and
activities can be reviewed by scrolling through the timeline or activity list. Although the SMInter-
face can indirectly provide information about the fault situation (e.g., anomaly occurred if the agent
is performing fault management activities), its primary purpose is to illustrate information for mon-

itoring the intelligent agents.

The SMInterface shows information from the SM and Heartbeat concerning the status and activities

of agents executing the global plan. The left side of the display lists labels for the graphic timeline
items on the right side. These labels are a combination of agent health and status assessments
(e.g., RCS-IS-ALIVE, indicating that the Heartbeat agent believes the PropSys agent is function-
ing properly) and agent activities corresponding to the steps of the global plan (e.g., RCS-
DETECTION, indicating that the PropSys agent has detected an anomaly). Labels are added dy-
namically to this status and activity list as situations develop. Ongoing activities are indicated by
timeline bars, and single events (e.g., message sent) by triangular markers. Current time is
marked by a hollow diamond in the first line of the timeline. See figure 3-3 for an example illus-
trating the SMInterface display.
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Figure 3-3. Example of the SM Interface Display.

The EPSOI displays fault diagnosis information from the EpSys agent. This display consists of a
scrolling message window and multiple digital panels. These panels are grouped by the subsys-
tems in the EPS (i.e., fuel cells, power distribution and control, and power reactant storage and
distribution). The status of parameters within these subsystems is displayed in the digital panels.
Diagnostic conclusions are displayed in a scrolling message list. User control buttons are provided
for setting up and running EpSys. These buttons are not used during the CoopES demonstrations,
and are an artifact of the original development as a stand-alone system. See figure 3-4 for an
example of the EPSOI display.
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Figure 3-4. Example of the EPSOI Display.

The RCSOI displays fault diagnosis information from the PropSys agent and parameters from the
simulation of the RCS. The RCSOI display has two parts. The left side of the display shows a

high-level schematic of either the left or right aft RCS 16. This schematic illustrates the path of fuel
flow through the components of the RCS. The valve components controlling this flow are shown
as dynamic icons whose shape and color to illustrate the combined state and status of the valve. A
legend defining possible valve states and statuses is shown in the upper left comer of the display.
The right side of the display provides sensor measurements and intelligent system conclusions
about the RCS system shown in the schematic. The current values of data from the simulator

(e.g., tank temperatures, pressures) are displayed on digital panels. Intelligent system assessments
of the state (e.g., open, closed) and status (e.g., good, failed) of the valves in the system are also
displayed on digital panels. The RCSOI provides no user control capability. See figure 3-5 for an

example of the RCSOI display.

16 The aft RCS consists of duplicate propulsion systems, one each on the left and right sides of the vehicle.
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Figure 3-5. Example of the RCSOI Display.

The CM display is used to configure CoopES and start the system demonstration. Configuring
CoopES consists of allocating agent processes to the available hardware platforms and specifying a
demonstration scenario. As illustrated in figure 3-6, the CM display consists of a pull-down menu

and a graphic display of agent configuration. An agent is allocated to a host by selecting a node 17
icon on the graphic and specifying a process and a hardware platform. Using the menu, the user
can launch and halt CoopES, launch and reset agent processes, and select pre-defined fault scenar-
ios. The graphic of system configuration illustrates all active agents and their host platforms. This
display is not used after starting the system.

3.5 Design Process

CoopES is a proof-of-concept prototype developed to demonstrate the feasibility of distributed
cooperating expert systems, and to define requirements for building such systems. It had a further
constraint to reuse stand-alone expert systems and integrate them into the multi-agent architecture.
Many difficulties were encountered in reusing stand-alone expert systems. These difficulties re-
suited from incompatibilities in system architectures, knowledge representations, and communica-
tion approaches.

CoopES was built by McDonnell Douglas Space Systems Company (MDSSC) (J. Rufat, C.
Clark, G. Watts) for the Software Technology Branch (C. Culbert/PT4). It was developed itera-
tively by a large development team. The development team was partitioned into groups developing
specific software agents. Users were not actively involved in this development, and domain
knowledge was derived from documentation (e.g., Space Shuttle malfunction procedures). The
CoopES project has been completed, and the results of the project have been documented
(MDSSC, 1990).

17 A node consists of a host platform and the agent processes running on that platform.
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Figure 3-6. Example of the Configuration Manager Display.

3.6 Study Method

Information about CoopES was obtained from a demonstration on January 28, 1992, from inter-
views (1/28/92) with G. Watts and C. Clark on January 28 and February 27 of 1992, and a phone
conversation with J. Rufat on July 6, 1992. The case data sources cited below were also used.

The figures used in this section were derived from figures included in the documents listed in
section 3.7.

Project Representatives

• Chris Culbert (Software Technology Branch, NASA/JSC)
• Colin Clark (MDSSC)

• Jorge Rufat (MDSSC)
• Grayum Watts (MDSSC)

3.7 Case Data Sources

Benson, Sara. EPSYS Project Overview. Operations Technology Initiative Task 5. McDonnell

Douglas Space Systems Company. December 1988.

Bochsler, Dan. Autonomous Space Vehicle Operations Simulation Testbed (A UTOPS). Briefing

in February 1990.

Culbert, C., J. Rufat, G. Watts, P. Vu. Cooperating Expert Systems. Briefing by Software

Technology Branch. December 1990.
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Malin, J. andSchreckenghost,D. Making Intelligent Systems Team Players: Overview for
Designers. NASA Technical Memorandum 104751. June 1992.

MDSSC. Cooperating Expert System Lessons Learned (Draft). November 1989.

MDSSC. Operations Technology Initiative OTI Task 5 - On-Board Systems Management.. FY
90 Report - FY 91 Project Plan (DRAFT). April 1990.

Rufat, J. Cooperating Expert Systems for Autonomous Spacecraft Operations Assumptions and

Design Guidelines (DRAFT). McDonnell Douglas Space Systems Company. March 1990.

Rufat, J., G. Watts, O. Carey, W. Parrott. Distributed Cooperative Systems for Advanced
Automation: Tradeoffs.
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SECTION 4

EXTENDED REAL-TIME FEAT

4.1 System Description

The Extended Real-Time FEAT (ERF) system is a fault management tool for use by ground flight
controllers in the Combined Control Center (CCC) 18. The objective of the ERF project is to

extend the capabilities of FEAT by providing automated real-time analysis of failure models using
telemetry data for managing faults in a vehicle system (i.e., the monitored process). ERF assists

the flight controller in determining failure causes (fault isolation), failure propagation paths, and
failure effects (or impact assessments). Unlike most systems in the case study, ERF is not
custom-built for a specific vehicle system, but is instead a generic tool for use by all flight con-
trollers managing such systems. To use this tool, a system-specific failure model must be built, or
a FEAT failure model can be imported from vehicle system designers. A feasibility demonstration

of this system is being developed for the Space Station Freedom propulsion system.

As baseline software for the CCC, ERF complies with the CCC software and hardware standards.
It is being built to run on Sun and DEC workstations in a Posix environment and is being written
in the Ada language. Displays and controls follow human-computer interface standards (e.g.,
XWindows standards) and guidelines of the program.

4.2 Intelligent System and Functions

The ERF analyzes a model of possible failures in the monitored process to determine the set of
faults suspected as causing the observed onboard system failure conditions, including identifying
the common root cause for multiple failure conditions. To perform these functions, the off-line

FEAT 19 has been modified for use during real-time operations. ERF automatically analyzes the
failure model in a way similar to the manual analysis a flight controller would perform. The failure
model is represented as a directed graph (digraph), where nodes representing failure sources
(circles) are connected by edges (arrows) indicating causal relationships (arrows point from cause
to effect). A significant feature of ERF is that it extends the FEAT digraph model to include sensor
nodes associated with telemetry data and caution and warning (C&W) messages. Figure 4-1
illustrates a simple digraph of a light bulb connected to a power source via a switch. Failure of the
bulb to light can be caused by (1) a bad bulb, (2) a bad switch, or (3) a power problem (ground or
power source failure). For complex space systems, failure digraphs are considerably more com-
plex than the digraph in this example, often containing hundreds of nodes.

ERF performs two types of functions, identification of the root cause of a failure and prediction of
the consequences (or impacts) of a failure. Failure causes are identified by eliminating failure
nodes from the digraph that data indicate are not failed or that the model indicates could not be a

root cause. Failure consequences are predicted by propagating failures to nodes downstream 2°

18 The CCC will be used for ground-based support of the Space Station, and eventually for the Space Shuttle.

19 FEAT is a tool developed by Lockheed Engineering and Sciences Company (LESC) for NASA's Intelligent

System Branch (ER2). FEAT can be used by system designers for failure modes and effects analysis (FMEA).
FEAT is available for both a Macintosh and a Unix platform.

20 Nodes downstream from Node A are nodes connected to paths coming out of Node A (i.e., to the right of Node
A, assuming that arrows point to the right). Similarly, nodes upstream from Node A are connected to paths coming
into Node A (i.e., to the left of Node A).
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from the cause of the failure. These two functions are described in the remainder of this section.

The identification of root causes of a failure is discussed first. The prediction of failure conse-
quences is discussed at the end of this section.

Power Source I _ Light

zJ
Switch g

Power Source

B

Power Source Ground Light Ground

System Schematic

Power Source A Switch A Bulb

F.,,ur 
Power Source A( _

Fails  Wu tDCuht;Z' ',Power,, L

Source _ _ jlF1 _ "[
Grcund Power, Source B

Fail:Ted P°_llserSource_ ' F

Switch B k,
Fails Open Fatture ( _

System Digraph

Figure 4-1. A System Schematic and its System Digraph Model
(Schier and Gantzer, 1991).

ERF identifies the minimum set of potential root causes of a failure (called faults) by eliminating
nodes from the failure digraph. ERF analysis includes identifying a common cause of multiple
failures (i.e., cascading alarms caused by common root fault) and excluding secondary failures
from the list of potential failure causes. To do this, ERF interprets data from the sensor nodes in
the model, constructing a list of potential failure sources based on this data. ERF eliminates poten-
tial failure sources corresponding to inconsistent or impossible failures. The remaining nodes in
the digraph represent the minimum set of potential faults. These steps are discussed in greater
detail below.
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ERFcategorizessensornodesaccordingto thetelemetrydataandC&W messagesreceivedfor
eachsensornode.Dataarecomparedto nominaloperatinglimits21,anddataqualityandavailabil-
ity is checked.Theresultingsensorcategoriesarelistedbelow:

• observable - sensors in the failure model that are on the telemetry object list (TOL), i.e., data
are available

• good - sensors with data of good quality that are within nominal operating limits, i.e., good
data indicates no failure

• bad - sensors with data of good quality that are outside of nominal operating limits, i.e.,

good data indicates a failure
• unknown - sensors in the model that are not on the TOL, i.e., data are unavailable, or sensors

in the model that are on the TOL but have unacceptable data quality, i.e., data of bad quality

ERF performs a series of automated calls to the embedded FEAT system emulating the actions a
human flight controller would take to identify the minimum set of suspected faults. ERF f'n'st con-
structs another digraph representing the current condition of all observable sensor nodes. Good
and unknown sensor nodes are grouped and eliminated from this new digraph, since they cannot
assist in identifying the failure cause. Next, a list of the potential failure sources is constructed by

identifying all the singletons and doubletons 22 that would have to occur to reach the root node of
this new digraph (using the FEAT target function). This list is further pared by eliminating the

following nodes from the digraph:

• all single nodes upstream from a known good node
• all artificial nodes that are artifacts of building the model
• all nodes in doubletons with a partner node that was removed in a previous step

The portion of the digraph that remains after these steps represents the set of candidate nodes for
the root cause of the failure. If at any point in this pruning process a single node remains in the

digraph, it is assumed to be the root failure node.

The second type of functionality provided by ERF is prediction of failure consequences. A failure
impacts all nodes directly in the downstream path. When doubletons are in the downstream path,
all nodes downstream of the doubleton may be impacted also. Thus, ERF determines the set of all

possible failure consequences. The operator is responsible for interpreting these consequences
(e.g., identify the next worst failure). Since ERF uses more conservative operating limits than the
C&W system onboard the vehicle, it can be used to predict expected C&W messages and failure
impacts before they actually occur.

4.3 Human-Intelligent System Interaction Functions

ERF supports the flight controller in detecting faults in the monitored process, isolating their cause,
and assessing the impacts of faults. ERF does not support monitoring nominal operations, and
only initiates activity upon receiving a C&W message (and associated out-of-limits telemetry data

21 The nominal operating limits used by ERF to detect alarm conditions are more conservative than the operating
limits used to detect alarm conditions onboard the vehicle. This permits detecting and responding to potential alarm
conditions before they are annunciated onboard the vehicle.

22 A doubleton is a member of a pair of failure nodes both of which must fail before nodes downstream from the
pair will fail. A single failure relative to a node downstream is known as a singleton.
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and COMPS 23) from the Fault Detection and Management (FDM) system. The primary use of
ERF is to determine the failures that could cause the observed failure conditions (as evidenced in

telemetry data and C&W messages). ERF can also assist a flight controller in evaluating the
impacts of a failure, determining if a response to the failure is necessary, and planning needed

responses. In particular, a flight controller can use ERF to perform the following activities:

• Predict the consequences of taking no action to correct failure conditions (i.e., failure
propagation)

• Assess the impacts of a fault in terms of unavailable hardware and lost functionality, or loss
of redundancy in either of these

• Predict the next worse failure (i.e., critical functions affected by fault, such as loss of
redundancy introducing a new single point failure)

• Evaluate "what-if' scenarios by permitting the controller to hypothesize a failure or changed
sensor value, and analyze its consequences

ERF is a passive fault management system. It does not recommend crew actions in response to
failures, and does not issue vehicle commands.

Implicit in these activities are two different modes of operation, real-time data analysis and "what-
if' evaluation of consequences. For real-time data analysis, the model is evaluated to identify the
causes of failure conditions observed in telemetry data and C&W messages. For what-if evalua-
tion, hypothetical failures or sensor values are postulated to predict the consequences if such fail-
ures or sensor values were to occur. These modes correspond to different ways of interacting with
the intelligent system. For the real-time data analysis, the analysis of failures is automatic and data-
driven. For the what-if evaluation, the analysis of failures occurs at the discretion of the operator
and the conditions of the analysis are controlled by the operator. The distinction between these

modes of operation, and effective ways of shifting between them, have not yet been addressed in
the system design.

Instead of providing typical explanation capability, the collaborative activities described above are

supported by having the human and the system "share" a representation. In ERF, knowledge
about failure causality is represented explicitly in the failure model digraph. Since the system
reasons using the same model of failures that the operator monitors, both the operator and the
intelligent system use the same representation of information to perform fault diagnosis. This
shared representation assists in understanding failure situations as they develop (e.g., failure
events initiate analysis as they occur and the results of this analysis are shown on the digraph) and
in establishing expectations about what might happen next (e.g., predict failure propagation paths
and next worst failure). Explanation is not needed because the situation is revealed by changes in
the representation. Using an explicit representation of the failure model also supports on-the-job
training of the operator, by assisting the development of a mental model of system failures. As the
ERF representation becomes more widely used in space operations, the effectiveness of this shared
representation can be evaluated.

ERF supports the operator in supervising its activities. Having an explicit representation of the
failure model used by the intelligent system available to the operator assists the operator in under-

standing system capabilities and activities. The operator's understanding of what is represented in
the knowledge base (i.e., system failures, causal connections) is improved by monitoring the fail-
ure model digraph. The operator can also evaluate the effects of system reasoning on the knowl-
edge base by reviewing the nodes remaining in the digraph after failure diagnosis. The ability of
the operator to control the intelligent system depends upon the implicit modes of operation dis-
cussed above. During real-time data analysis, the diagnosis of failures does not require operator

23 COMPS are parameter values computed on the ground. These computations are often based on telemetry data.
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intervention. During what-if evaluation, the operator controls both the failure conditions and the
type of analysis performed by the intelligent system.

This description of how the operator interacts with ERF is focused on its use during real-time
operations. ERF is also used to construct and examine failure digraphs in preparation for a mis-
sion. It can assist in generating mission-specific procedures as well, by providing a model of
system failures for use in evaluating the effects and risks of procedures.

4.4 Supporting User Interface Capabilities

The ERF system is early in the design phase of system development, and the design of a graphical
user interface was in progress at the time of the interviews. This user interface design is not yet

complete, however, and consists primarily of the FEAT user interface. Although the final design
will likely change, the FEAT user interface design is described in this section, particularly how it
supports the operator in managing the monitored process and in supervising the intelligent system.
Since ERF is a real-time support system, this discussion focuses on the failure model analysis

capabilities of FEAT instead of the model construction capabilities.

Menu Bar

Action

Bar

Digraph Model
and

System Schematic
Display Area

Message

Display
Area

Figure 4-2. The Workspace of FEAT.

The workspace of FEAT (figure 4-2) consists of the following regions: (1) a graphical presentation
of the failure model, (2) an action bar and menu items for operating on the model, (3) a system
schematic, and (4) a message list. The model of system failures can be used both to assess failures

in the monitored process and to assist the operator in understanding intelligent system activities.
Both the action bar and portions of the menu provide capabilities for analyzing this model. The
system schematic can be used to associate the failures in the failure model to faulty components in
the system. Intelligent system conclusions about failure descriptions and causes are provided in a
scrolling message list.
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Model of System Failures

The model of system failures is useful both in managing the monitored process and in supervising
the intelligent system. To assist in supervising the intelligent system, the operator can monitor and
review the failure model to clarify system reasoning and knowledge. To assist in managing the
monitored process, the operator can analyze the failure model to determine both the causes and the
effects of failures.

Monitoring and analyzing the failure model involves three portions of the workspace: the graphic
presentation of the failure model, the action bar, and some items on the menu bar. The graphic of
the failure model illustrates information about failure causality in the monitored process. The
action bar and menu items provide operator actions for analyzing the failure model. Table 4-1

summarizes the graphic forms used to construct a failure model digraph. An example of the FEAT
display illustrating a failure model digraph is shown in figure 4-3.

Table 4-1. Graphic Forms in a Digraph

Symbol

©
Name and Use

node; denotes a possible failure point

within a model of system failures

edge; indicates a potential failure path

within a model of system failures

OR relation; indicates that if either node on the

left fails, the right-hand node fails

IG
Node Name/Mnemonic

Node Description

Component Name m

User Field

AND relation; indicates that both nodes on the

left must fail (and those failures overlap in

time ) in order for the right-hand node to fail

sensor; m the ERF implementation, this symbol

represents a sensor

text block; text associated with a node, e.g.,

FDIO 1SABE

'Diode 1 fails with

no output
DIODE 1

ELECTRICAL
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Figure 4-3. Example of the FEAT Display (LESC, 1991).

The user interface shown in figure 4-3 supports both monitoring and controlling the intelligent

system. Graphically presenting the failure model supports the operator in supervising the intelli-
gent system by improving the operator's understanding of system capabilities and reasoning. The
digraph illustrates the failure causality knowledge in the knowledge base, and shows changes in
the state of that knowledge base (e.g., highlighted nodes correspond to candidate failures). The
action bar and some menu items provide the operator with intelligent system control capabilities.
In addition to the typical types of intelligent system control (e.g., loading a knowledge base [failure
model], starting and stopping the system), the operator can change the state of the knowledge base
(e.g., setting failure conditions for a hypothetical analysis) and control the type of reasoning per-
formed by the intelligent system (e.g., selecting the type of analysis, such as fault isolation or
evaluation of consequences).

A user interface where the operator can graphically view the same failure model that is encoded in
the intelligent system knowledge base provides the following advantages:

• Permits the operator and intelligent system to "share" a representation of failure information
and, thus, develop a shared view of failure situations (see also section 4.3)

• Assists the operator in monitoring the intelligent system by clarifying its knowledge base and
reasoning

• Supports the operator in developing a mental model of system failures while performing fault

management tasks
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Of course, the final evaluation of the effectiveness of this user interface design will occur during
operational testing.

The user interface shown in figure 4-3 also supports the operator in managing the monitored pro-
cess by providing capability to perform the collaborative, fault management activities described in
section 4.3. These activities require two different ways of using the intelligent system: real-time
analysis of failure conditions indicated in telemetry data, and what-if evaluation of operator-speci-
fied failure conditions. The current user interface design is oriented toward what-if evaluation,

since it is based on the FEAT user interface that was designed for off-line analysis. User interface
support for real-time data analysis is not well specified at this time.

For real-time data analysis, fault diagnosis is initiated automatically upon receiving data indicating a
failure. Failure conditions are propagated through the failure model and the suspected causes of
failures are isolated. During the analysis, the sensor nodes corresponding to C&W messages and
the failure nodes activated by failure propagation are highlighted on the graphic. When the analysis
is complete, only the failure nodes corresponding to the suspected faults are displayed. Although
the specifics of operator interaction for data-driven analysis have not been specified, less interac-
tion is needed because data analysis occurs automatically. Operator interaction is likely to focus on
evaluating the consequences of the identified faults.

For what-if evaluation, the operator selects the failure conditions to be analyzed and controls the
type of analysis performed. The consequences of a hypothetical failure can be evaluated or the

possible causes of that failure identified. The operator can initiate the automated analysis capabili-
ties of ERF, or can interact manually with the system to perform what-if evaluation in the follow-
ing ways:

Mark a specific node (called the source node) as failed and propagate the failure through the
digraph to examine the effects of failing this node (called a downstream analysis, or source
propagation). Nodes affected by the failure are highlighted on the digraph graphic and
schematic.

Mark a target node as failed and identify all node failures that could have caused the target
node to fail (called an upstream analysis, or target propagation). Nodes that could cause the
target failure are highlighted on the digraph graphic and schematic.

Identify individual failure nodes (singletons) in a failure path that could be solely responsible
for the failure of the target. The candidate singletons are highlighted on the digraph graphic
and schematic.

Identify node pairs (doubletons) that must both fail before the target node can fail. The
candidate doubletons are highlighted on the digraph graphic and schematic. Note that these
failures are not necessarily simultaneous failures (occurring at the same point in time), but
must be coincident failures (i.e., have overlapping times of occurrence).

• Identify the other members of the possible doubleton pairs (or partners). The partners are
highlighted on the digraph graphic and schematic.

• Identify the region where the paths of two target nodes intersect (called target intersection).
The nodes in the path intersection are highlighted on the digraph graphic and schematic.

• Identify a singleton path between two selected nodes. The nodes in this path are highlighted
on the digraph graphic and schematic.
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To performtheseactivities,theoperatorusescapabilityprovidedin theactionbartothe left of the
screenandin themenubaratthetopof thescreen.Specificanalysiscapabilitiesprovidedby the
actionbararedescribedin figure4-4. Menuitemsusefulin digraphanalysisaredescribedin
figure4-5. Becausethereal-timesupportisof primaryinterest,menuitemsusedfor constructing
andmaintainingadigraphmodels(e.g.,cut,paste,etc.) arenot discussed.Thecolor codingfor
highlightingnodeson thefailuredigraphis shownin table4-2.

Source

0-I.0
Target

Target-I

Clear

0 0
Set

CHaD

Unset

0 0
Partner

Initiate Source Propagation; clicking this button will cause the selected node(s)
to propagate as sources through the digraph, and nodes affected by the selected
source(s) will be highlighted in red (the source(s) will remain green)

Initiate Target Propagation; clicking this button will cause any selected node(s)
to be propagated as targets and those nodes which are potential targets will be

hi_hli_lhted in red (singletons) or ma_lenta (doubletons)
Initiate Target Intersections Propagation; if more than one target is selected and
the failure paths intersect, the singleton intersections will be highlighted in blue

and the doubleton intersections in c),an
Clear all Selects, singletons & doubletons; removes the highlighting from all

nodes except those selected with the Set button

SET selected nodes and propagate effects; sets the selected node(s) as failed and

highlights these nodes and components in yellow

Unset ALL SET nodes & selections; removes the setting of all nodes previously

selected as "failed" and removes the yellow highlighting

Find singleton path between selected two nodes; causes the singleton path
between selected target and source to be highlighted in red

Highlight doubleton partners for TARGET and selected doubleton; after target

propagation, distinguishes other doubletons that will pair with a selected
doubleton and hiohliahts them in Durple

Figure 4-4. Description of Analysis Capabilities Provided by Action Bar.
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Figure 4-5. Description of Analysis Capabilities Provided by Menus.
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Table 4-2. Color Coding Used on the Failure Digraph

Use Color

Blue singletons that are common to all target selections

Cyan doubletons that are common to all target selections

Green components that are selected

Magenta doubletons

Purple associated doubleton partners

Red singletons to some selected target; singleton to one
target and doubleton to another

Yellow nodes and components affected by the SET function

Black unhighlighted portions of the digraph model

The FEAT user interface provides an overview window that summarizes the status of each node in

the digraph and each component in the schematic. The overview window consists of two lists, one

containing each node in the digraph and the other containing each component in the schematic.

Icons to the right of each node or component indicate the status of the node with respect to failure

analysis (e.g., is the node selected, is the node a partner in a doubleton pair). This status is dis-
played redundantly, using unique icons in combination with the color codes shown in table 4-2

(see figure 4-6). The overview window can also be used to navigate within a complex failure

model or schematic that is larger than the screen viewport. The user can locate a specific node or

component by selecting its name in the list using a mouse. See figure 4-7 for an example of the
overview window.

I
IC-IN-A

[] I1 IC-IN-B

IC-IN-C

J_. IC-OUT

Module File Name

SELECTED

(GREEN)
SET

(YELLOW)

SINGLETOI
(RED)

Status Flags

DOUBLETON
(MAGENTA)

PARTNERS

(PURPLE)

INTERSECTING
DOUBLETONS

(CYAN)

INTERSECTING
SINGLETONS
(BLUE)

Figure 4-6. Icons and Color Coding used in the Overview Window.
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e__l PIPING-B

12 II Occurs in:

File(s) I
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Figure 4-7. An Example of the Overview Window.

As mentioned previously, the ERF user interface design is not complete, and largely consists of the
user interface designed for FEAT. Some user interface issues not yet resolved are listed below:

Integration of information from multiple sources, including telemetry data from the vehicle,
C&W messages from the FDM, failure knowledge from the knowledge base, and conclu-
sions about failure states inferred by the system

• Clear distinction between the two modes of operation (real-time data analysis and the what-if
evaluation), and methods for shifting between these modes

• Effectiveness of the digraph representation and the schematic representation for operational

support
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Schematic

A schematic illustrating the physical layout of system components is also provided. The flight
controller can select components for analysis using the graphic of the schematic as well as the
graphic of the digraph model. This schematic is displayed concurrently with the digraph failure
model (see figure 4-3). This arrangement assists the operator in associating the failures shown in
the digraph with the corresponding faulty components in the schematic. In fact, the same color

coding is used to indicate failures in the digraphs and faulty components in the schematic. This
comparison can be useful both in assessing the impacts of the failure to system hardware (and
associated functionality), and in evaluating ways to recover from failures (e.g., schematic should
indicate whether redundant capability is available).

The schematic and the digraph have similar layouts (figure 4-3). There is not a one-to-one corre-
spondence between failures and faulty components, however. The failure model can also include

artificial nodes created as part of the model but having no corresponding physical component.

Message List

The message window lists the possible failures for a selected component. Messages describe fail-
ures and identify the possible causes of failures. The schematic component affected by a failure is
identified in the header to the message list (e.g., in figure 4-3, messages refer to the PUMP com-
ponent) and is highlighted in the schematic. Instead of interacting with the digraph graphic, the
flight controller can mark failure nodes for analysis by selecting lines of text in the message list.

4.5 Design Process

This project was initiated by the Software Technology Branch/PT4 at JSC to investigate the use of
artificial intelligence tools and technologies in space flight operations. This investigation included
surveying the technologies in operational use at NASA. Based on the results of this investigation,
a project was proposed to modify the off-line analysis tool FEAT for real-time use in the CCC.
This project was funded, and the Space Station Ground System Division/DJ (J. Lauritsen) at JSC

assumed management of the project. Loral Aerospace, Space Information Systems Division (J.
Dell), the CCC prime contractor, became involved at this time as well.

ERF has been designated as baseline software for the CCC. Thus, it must be implemented on a
standard CCC hardware platform and must comply with CCC standards and guidelines. The
system is also constrained from issuing commands directly, and must instead recommend that a
human take any needed action.

ERF is being developed as a Rapid Development Project for the CCC. As such, it must meet the

content specification of CCC formal documentation (i.e., must contain all concepts from system
analysis and design), but is not required to follow the format specification of the formal documen-
tation. To date, a Requirements Definition Document has been delivered, and both a System
Requirements Review (October 1991) and a Preliminary Design Review (March 1992) have been
conducted. At the time of the interviews, the developers were beginning user interface design and
initial system implementation.

ERF is one of the few systems studied where significant analysis was done before prototyping.
The bases of this analysis were descriptions of representative operational situations generated by
the users (S. Kirby/DE2). These specific failure situations were generalized as typical failure sce-
narios. These scenarios were used to identify the functions that must be performed during fault
management operations. These functions were represented as Data Flow Diagrams (DFDs) speci-
fying fault management activities and the information required to perform these activities (see
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example below). The DFDs were then verified by mentally postulating faults and evaluating
whether the resulting activities were reasonable (i.e., conducting a "mental simulation"). These
DFDs were used to write the Functional Definition Document, and were included in that document.

The DFDs were also an effective means of discussing system capability with the users, and as-

sisted in gaining the understanding and support of the user community.

Example: Figure 4-8 illustrates a DFD of the fault detection portion of the fault management

process. The fault patterns provided to the user include single and dual-point failures, and
predicted failure chains. The C&W information provided to the user includes predicted C&W
cascades and secondary C&W lists. User input includes options and authorizations, parame-
ters unavailable electronically, and the shutdown command. Figure 4-9 summarizes this
information exchanged between the flight controller and ERF during fault detection.

Derived

lata

;imulated Down-

Data Linked
Data

Fault

Patterns

Noise

Filter

Operational
Mode

Definitions

Mode

Tables

Detect
Fault

Us(

Input

Filtered Filtered

Data Data

Current

Current
Current

Data

Situation Data

Data History

Status tional

OK Mode

User
Interface

Operational
Mode

Figure 4-8. Data Flow Diagram of the Fault Detection Process 24.

24 Diagram derived from the Fault Detection and Management Functional Definition Document (1991 ).
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Figure 4-9. Information Exchanged between Flight Controller and ERF.

The scenario-based approach to systems analysis involved the users very early in system devel-
opment. Users described representative scenarios used in identifying system functionality and
information flow needed for fault management. Users also assisted in evaluating these functional
specifications using mental simulations. This approach made effective use of user expertise and

time by focusing discussions on system use during operations (i.e., "describe how this system will
be used") instead of system or technology features (i.e., "list the features the system should
have"). The development team also possessed considerable expertise in both space and aviation

operations (R. McNenny and C. Clark from MDSSC), as well as artificial intelligence technology
expertise (S. Jowers from MDSSC).

4.6 Study Method

Information about ERF was obtained from demonstrations and interviews with S. Jowers and

Robert McNenny in November (5) of 1991 and January (17) and July (29, 31) of 1992. The case
data sources cited in section 4.7 were also used, and the figures shown throughout section 4 were
derived from figures included in these case data sources.

Project Representatives

Steve Jowers (MDSSC)
Robert McNenny (MDSSC)

4.7 Case Data Sources

Bohler, Jim. DA/FA/RM Planning Meeting. Briefing by Grumman. October 1991.

Clark, C., S. Jowers, R. McNenny, C. Culbert, S. Kirby, and J. Lauritsen. Fault Management

for the Space Station Freedom Control Center. Proceedings ofAIAA 30th Aerospace Sciences
Meeting & Exhibit. Reno, NV. January 1992.

DRL LI 25B 0VIDSSC). Space Station Control Center Extended Real-Time FEAT Subsystem
Functional Requirements. December 1991.
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JSC-13193. Space Station Control Center User Detailed Functional Requirements. April 1991.

Lauritsen, J., D. Lawler, and S. Karro. Extended Real-Time Feat in the Space Station Control

Center. Briefing at NASA Monitoring and Diagnosis Workshop. January 1992.

LESC, 1991. User's Guide for the Failure Environment Analysis Tool. Versions 3.0 (Digraph

Editor) and 3.3. November 1991.

Malin, J., D. Schreckenghost, D. Woods, S. Potter, L. Johannesen, M. Holloway, and K.

Forbus. Making Intelligent Systems Team Players: Case Studies and Design Issues, Vol. 1.

Human-Computer Interaction Design; Vol. 2. Fault Management System Cases. NASA
Technical Memorandum 104738. Johnson Space Center, Houston, TX. September 1991.

Schier, Jim. Digraph Analysis. Presentation by Grumman. October 1991.

Schier, J., and D. Gantzer. Integrated Digraph Analysis of SSF Reboost Function for Stage 2.
Briefing by Grumman. November 1991.

SSP-30000. Digraph Analysis Directive. Space Station Program Level H Change Request to
Section 2, Part 4, Revision B (draft). October 1991.

Stevenson, R., and R. McNenny. Fault Isolation in Space Station Freedom Systems from the

Space Station Control Center. Presented at JAIPCC '92 Symposium. March 1992.
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SECTION 5

PDRS DECISION SUPPORT SYSTEM

5.1 System Description

The PDRS DESSY is a fault management system for the Space Shuttle RMS. DESSY assists the
RMS/Mechanical System flight controllers in monitoring status and detecting faults for two RMS

subsystems, the MPMs and the MRLs. The MPMs rotate the RMS ann away from the vehicle for
RMS operations (deploy), and toward the vehicle for storage (stow). The MRLs attach the arm to
the body of the vehicle for storage. DESSY monitors telemetry data to assess the state and status
of these subsystems.

Because the DES SY case was studied previously (Malin, et al, 1991), it provides an opportunity to
evaluate how the system has evolved since the initial study. In this report, changes from the
original system are discussed in detail, including both the problems with the original design and
how these problems were solved. Monitoring system development over a period of time has also
resulted in a better understanding of the intelligent system design process.

The original version of DESSY was developed in CLIPS on a PC. The current version of DESSY
is developed in G2 and the XWindows System, and runs on Sun SPARC Unix workstations. It

uses telemetry data from the RTDS. It is located both in the RMS Laboratory and in the Multi-
Purpose Support Room (MPSR), where it has been used during some missions involving the
RMS. DESSY can also run on a MassComp workstation, but has had performance problems on
this platform.

5.2 Intelligent System and Functions

The PDRS Decision Support System uses telemetry data (1) to monitor the state of the MPMs and
MRLs, (2) to detect faults that affect this subsystem, and (3) to assess the impacts of these faults
on functional capability. The PDRS includes four MPMs, one located at the shoulder of the arm
and three others located along the arm (fore, mid, and aft attachment points), and three MRLs, co-
located with the forward, mid, and aft MPMs. DESSY determines the state 25 and status of the

MPMs and MRLs, and detects motor failures affecting either system. The ability to assess func-
tional capability has been enhanced since the last case study (see section 5.3). This capability
assists the flight controller in determining whether the RMS system can support nominal operations
after a fault occurs.

DESSY combines object-oriented data structures with rule-based reasoning. The rules provide
logic for monitoring and detecting faults in the MPM/MRL subsystem. The planned DESSY
design includes additional software modules for monitoring other hardware subsystems in the
RMS.

Within the MPM/MRL software module, the rules are partitioned into sets by system function,
including data monitoring, state transition detection, failure diagnosis, expert system control, and
user interface (Land, et al, 1992). The system can automatically enable or disable rule sets in
response to data problems, or to change system context (e.g., configuration change).

25 The states of the MPMs are deployed, stowed, or in transition between these states. The states of the MRLs are
released, latched, or in transition between these states.
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Manyof thechangesto DESSYsincethelastcasestudyhavebeenin responseto dataproblems
encounteredduringoperationaluseof thesystem.TheDESSYprojecthasbothcharacterizedthese
dataproblemsanddesignedsolutionsto them(Land,et al, 1992). Thefollowing typesof prob-
lemshavebeenobservedduringdevelopmentandtestingof DESSY:

Loss of data

When the Space Shuttle enters the Zone of Exclusion, LOS makes telemetry data unavailable

at the ground support consoles. Throughout the LOS period, the RTDS telemetry processor
providing data to DESSY cycles through the last four to five seconds of data transmitted.
Processing this data (which is often of poor quality) can cause intelligent system errors.

Erratic data

The quality of telemetry data usually degrades near AOS and LOS. Processing this data can
cause intelligent system errors.

Data lags and irregularities
Data can lag or exhibit transients due to noise or hardware properties (e.g., switches can
"bounce" when flipped, causing transients in data). When watching for a timed event to
occur (e.g., deploy), data lag can cause the intelligent system to erroneously conclude that the
event failed to occur (or occurred late). Transients can cause the system to conclude an erro-
neous state or event.

Ambiguous data
Weight constraints onboard the Space Shuttle limit the available sensors. Insufficient sensors
can result in ambiguous data, where two states or events cannot be distinguished using the
available telemetry (e.g., LOS and guillotining the arm have the same data signature). This
can cause the intelligent system to make an erroneous conclusion.

DESSY has taken a unique approach to solving these data problems. Instead of the usual approach

of preprocessing the telemetry stream to eliminate bad data, the DESSY rule base was developed to
be robust to data problems. Robustness is achieved by designing for graceful degradation when

processing bad data and graceful recovery when good data becomes available (Land, et al, 1992).
Graceful degradation means minimizing the incorrect conclusions drawn by the intelligent system.
This is accomplished by disabling rules when data quality is poor or uncertain, and by considering
operational context and expectations when interpreting data. Graceful recovery is accomplished by
self-correcting rules (see figure 5-1) that permit retracting erroneous conclusions. Special rules
have also been written to handle ambiguities in data that have implications for critical functionality

(e.g., dead face rule to distinguish LOS from arm guillotined).
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Situation

Intelligent system corrects wrong conclusion about sensor status
• Status of a sensor previously set to "questionable-on"

("on" in operational context when should not be)
• Latest data from sensor indicates return to the expected "off" state

Corrective Rule

If

status of sensor is questionable-on
latest data from sensor indicates state is off

Then

conclude sensor is functional

Figure 5-1. Example of a Self-correcting Rule in DESSY

(derived from Land, et al, 1992).

5.3 Human-Intelligent System Interaction Functions

The original DESSY HCI design concepts have been updated to provide additional information
needed by both the intelligent system and by PDRS flight controllers to perform fault management
for the MPM/MRL subsystem. These information items include both telemetry data and intelligent
system conclusions. The following information requirements were identified during operational
testing of the system:

System power

Flight controllers monitor the state of the payload bay power switch (called mech power) to
determine if power is available for RMS operations. Both mech power and the power bus
enables are telemetry values from a related, external system (i.e., the electrical power system)
that were not identified in the original HCI design concepts.

Ops Stats and inferred state of switch on Shuttle

The Ops Stats are telemetry data values indicating whether an AC power relay is active and
the motors are on. Both the intelligent system and flight controllers use the patterns of acti-
vation in the Ops Stats to infer that MPM/MRL commands have been issued. An active Ops
Stat indicates that MPM/MRL operations might have been commanded, not that a command
has occurred 26. To infer that a switch commanding MPM/MRL operations has been enabled
by the crew, flight controllers look for both the Ops Stats to be on and for motion to be ob-
served by a sensor (i.e., the microswitches).

MPM/MRL subsystem status

The original concept of subsystem status was refined to better support flight controllers in
assessing functional capability after a system failure. A composite assessment of subsystem
functional capability has been added; the original status only addressed specific components
of the subsystem, such as the forward MPM. Additionally, the system now distinguishes

between normal operations prior to any failures (i.e., the nominal state) and normal opera-

26 These relays are also activated by the crew for non-RMS activities.
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tions after recovery from one or more failures (i.e., the operational state). This distinction is
made to alert the flight controller that a failure has occurred in the past, and that the monitored
process has apparently recovered full operational capability (although subtle alterations due to

the failure may not be apparent).

In addition to these new types of information, DESSY integrates information from the intelligent

system with telemetry data (e.g., the telemetry bubble shown in section 5.4, figure 5-2). A possi-
ble future enhancement is the integration of information from other PDRS real-time support sys-
tems (i.e., the RMS Position Monitor, the OPS Mode Monitor, and the Temp Mode Monitor;
Muratore, et al, 1990) with DESSY.

DESSY supports the user in monitoring its health in two ways. First, the user can check the qual-
ity of the data processed by the intelligent system (i.e., check the data quality status provided by
the RTDS data acquisition system). Second, the user can check the intelligent systems assessment
of its conclusions. As part of handling data problems, DESSY alerts the user when a data value is
"questionable" and intelligent system conclusions might be adversely affected.

Although the original design concepts included considerable capability for the user to intervene in

intelligent system processing 27, DESSY provides limited support for such intervention. Instead,
DESSY has been designed to be robust with minimal human intervention. For example, the parti-
tioning of the rule base enables the intelligent system to automatically disable portions of its knowl-
edge base to prevent reasoning about bad data. Although only the intelligent system can disable a
rule base at this time, this architecture would support adding capability for a flight controller to

manually disable rule sets.

In cases where the intelligent system has failed irrevocably, the human can take over all intelligent
system tasks. The system design supports such take over by making access to telemetry data inde-
pendent of the intelligent system, and by putting information from the failed intelligent system
visually in the background (i.e., greying out portions of the display showing information from the
intelligent system). See section 5.4 for an example of the display design supporting this capability.

Although DESSY does not support real-time playback of telemetry as described in the original
design concepts, users can replay previously recorded data for use in off-line analysis. This has
been very useful in testing the system.

5.4 Supporting User Interface Capability

The original HCI design concepts for DESSY included a hierarchy of screens, corresponding to
the PDRS hardware subsystems. A system summary screen, or Integrated Status Display, was at

the top level of this hierarchy, and the MPM/MRL Subsystem Status display was in the second
level. The user viewed one screen at a time. Figure 5-2 shows the original HCI design concepts
for the MPM/MRL Subsystem Status display. As shown in figure 5-3, the workspace design of
DESSY has been modified such that portions of the Integrated Status Display containing key sum-
mary information and the user control buttons are shown in conjunction with the MPM/MRL Sub-
system Status Display. This workspace consists of (1) a mission header at the top, (2) control
buttons just beneath the mission header, (3) a status summary panel for PDRS subsystems and

related external systems 28 at the left of the screen, (4) a region to the right that displays detailed

27 User intervention capability in the original design concepts (Schreckenghost, 1990) included (1) restarting from
checkpoint, (2) correcting erroneous conclusions and parameters internal to the intelligent system, (3) providing the
system with new information, (4) enabling and disabling rule sets, and (5) directing the system to focus on a rule
set.
28 The information requirements for illustrating overall system status are not complete.
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status information from the MPM/MRL subsystem, and (5) a message list at the bottom. This

approach will assist flight controllers in monitoring the status of several PDRS subsystems while
looking at the details of a specific subsystem, making DESSY more useful throughout RMS
operations.

MPM

PORT MRL AFT

Figure 5-2. Original HCI Design Concepts for the MPM/MRL

Subsystem Status Display

DESSY supports the operator in monitoring its activities. Information assisting the operator in
monitoring the health of the intelligent system is displayed in two areas. The quality status in the
mission header displays the assessment of data quality over the last 100 cycles by the RTDS data
acquisition system. "Questionable" intelligent system conclusions (i.e., conclusion possibly erro-
neous) are annotated as such in both the message list and the subsystem status panels at the top of
the dynamic region.

As described in section 5.3, DESSY is designed for robustness with minimal human intervention.
If the human does have to intervene, however, the DESSY user interface supports that interven-
tion. When the human takes over intelligent system tasks, the user interface can reflect this task

reallocation by showing regions of the display with information from the intelligent system in grey
(see figure 5-4). This design focuses operator attention on the displays showing data (telemetry
and COMPS) needed to do intelligent system tasks manually, and puts information from the intelli-
gent system into the visual background. The operator uses the "sys cntrl" button to grey out in-
formation produced by the intelligent system.
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Figure 5-3. Information from Integrated Status Display Combined with MPM/MRL
Subsystem Status Display.
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Figure 5-4. nlustration of a Portion of DESSY User Interface
After Manual Take Over.

Many new information items have been added to the MPM/MRL display since the original design
concepts (see section 5.3). At the request of the flight controllers using DESSY, the display of
information about the state of some physical items (e.g., the state of switches and talkbacks on-
board the vehicle) emulates the appearance of the physical item. The following describes how
these items are shown on the screen:

System power

The state of the mech power switch is shown to the left of the dynamic region. A graphic
form mimicking the physical switch onboard the vehicle is used to illustrate switch state.

Power bus status is shown using color-coded icons positioned beneath the corresponding
MPM/MRL components.

Ops Stats and inferred switch state

Color-coded panel lights showing the states of the Ops Stats (on or off) are positioned be-
neath the corresponding MPM/MRL components. The inferred switch state is shown using
the switch icons near the bottom of the dynamic region. The icons illustrating switches and
talkbacks emulate the Display and Control Panel onboard the vehicle that the crew uses to
monitor status and enter commands.

MPM/MRL subsystem status

In the original design concepts, the overall subsystem status was shown using color coding
on the panels displaying MPM and MRL states 29. In the updated design, these panels
showing subsystem state have been enlarged to include text messages describing the func-
tional status of the subsystem as well. Subsystem status is redundantly coded using color.

Other user interface upgrades include (1) adding an indicator of AOS and LOS in the mission

header; (2) changing the order of the MRL microswitch light panels from the original design to cor-
respond to the arrangement of the talkbacks onboard the vehicle, since the flight controllers are
familiar with this ordering; (3) simplifying the user actions for making user log entries (using the
"input" button); (4) segregating the development features of the user interface from operational
features of the interface; (5) accessing raw telemetry data via pop-up window instead of providing

29 The nature of the status was described in the status panels located beneath each component of the MPM/MRL

subsystem.
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aseparatescreenfor telemetrydisplay;and(6) usingadditionalcolorsto codeinformationabout
thestateof armanduserconfidencein intelligentsystemreasoning. Referto figure5-2for the
originalMPM/MRL SubsystemStatusdisplay,andfigure 5-3 for themodifieddisplay. Seetable
5-1for themodifiedcolorcodingconventionsusedin DESSY.

In implementingtheoriginaldesignconcepts,DESSYhasreusedsomeuserinterfacedesignsand
codedevelopedfor otherRTDSintelligentsystems.Reuseof designsandcodereducesdevelop-
mentcosts,avoidingduplicativeeffort andtakingadvantageof theexperiencegainedin designing
othersystems.Additionally,designconsistency(e.g.,look andfeel) acrossflight supportsystems
is anaturalby-productof thisapproach.To providethemessagelist capabilityshownin figure5-
2,availablecodewrittenusingtheXWindowsSystemfor amessagelist wasintegratedwith the
DESSYG2userinterface.Someuserinterfacedesignsin DESSYhavepotentialfor reuseaswell.
Forexample,apop-uptimerwindowprovidestheability to monitorelapsedtime(seefigure5-5).
Thedesignconceptof "greyingout"displayregionsassociatedwith adisabledintelligentsystem
alsohaspotentialfor reuse(figure5-4).

Table 5-1. Color Coding in the PDRS DESSY Displays

Color Use

green nominal status

7etlow degraded status

i li_,_htblue

orange border
white

failed statusred

dark blue active item
inactive item

grey

Loss of Sisnai (LOS)

arm latched or ready for latch
• arm uncradled (on ann icon)

• suppress display of intelligent system
conclusions because they are suspect by

user (on status panel)

SHLD-MPM

I I
Ist°w-stat s I°perati°na' I
I deploy-status I operational I

Figure 5-5. Example of the DESSY Timer Pop-Up Window.
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5.5 Design Process

DESSY is a RTDS prototype being developed in a joint project by the Intelligent Systems Branch
of the Engineering Directorate (J. Malin/ER2 and S. Land/ER2) and the RMS Section of the Mis-

sion Operations Directorate (D. Pallesen/DF44). Like most RTDS prototypes, DESSY is being
developed iteratively and evaluated in an operational environment. The users actively participate in
design (D. Culp, formerly RSOC), both in specifying system requirements and in evaluating how
effectively the prototype supports flight controller tasks. The software is written by an artificial
intelligence technology expert (S. Land/ER2), and HCI design concepts are developed and evalu-
ated by experts in this area (C. Thronesbery/MITRE, D. SchreckenghosffMITRE, and G. Johns/
formerly MITRE).

An important lesson learned during the development of the DESSY system is the importance of

scoping the system to be continuously useful. To be continuously useful, a system should support
the operator throughout operations, since frequent use improves user acceptance of and reliance on
the system. Such scoping can include providing information about nominal events as well as fail-
ure events to assist the user in understanding situations as they develop. The system must also
solve a problem that is well-recognized by all members in the user community, not just a few that
are actively involved in the project.

Because the authors have participated in the design of DESSY, this project has provided a unique
opportunity to learn about the intelligent system design process. Many concepts for designing an
intelligent system prototype for operational use (called "operational prototyping"; Thronesbery and
Malin, 1992) have been developed and tested during the design of DESSY. Central to the opera-
tional prototyping concept is the need to define task-based information requirements. Much of the
effort expended early in prototyping is to discover these requirements. The initial information
requirements for DESSY were summarized in a storyboard of HCI design concepts (Schrecken-
ghost, 1990). Further requirements were identified and refined during operational testing of the
system, emphasizing the importance of such testing. An important distinction in the types of test-
ing was also made while working with DESSY. Typical user interface testing focuses on the

usability of the design (i.e., testing that the user interface presents information effectively). The

testing of DESSY has also included utility testing (i.e., testing that the system provides the right
information to support user tasks). Distinguishing between what information is needed and how
that information should be presented was also useful in resolving design problems. When these
problems occur, separate discussion of the information issues and the presentation issues results in
more effective use of the design team.

5.6 Study Method

Information about DESSY was obtained from demonstrations and interviews conducted in January
(22, 28), February (5), April (1), May (20, 27), June (30), July (2), and August (7, 14) of 1992.
These interviews were conducted with the project representatives listed below. The case data
sources cited in section 5.7 were also used, and the figures shown throughout section 5 were
derived from figures included in these case data sources.

Project Representatives

• Sherry Land (Intelligent Systems Branch, NASA/JSC)
• Don Culp (formerly RSOC)
• Can'oll Thronesbery (MITRE)
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5.7 Case Data Sources

Culp, Don. Interpretation of Space Shuttle Telemetry. Proceedings of the First CLIPS Confer-

ence. August 1990.

JSC (NAS9-18000, TD383). Payload Deployment and Retrieval System Overview Workbook.

PDRS OV 2102. February 1988.

JSC (NAS9-18000, TD385). PDRS Malfunction Workbook. PDRS MAL 2102. April 1988.

JSC (NAS9-18000, TD386). Payload Deployment and Retrieval System Nominal Operations.
PDRS NOM OPS 2102. December 1988.

Land, Sherry. Phase I Technical Intern Review. Automation and Robotics Division, Engineering
Directorate, Johnson Space Center. August 1991.

Land, S., J. Malin, and D. Culp. DESSY: Making a Real-time Expert System Robust and

Useful. Proc. NASA Space Operations, Applications, and Research Symposium. Houston, TX.

August 1992.

Malin, J., D. Schreckenghost, D. Woods, S. Potter, L. Johannesen, M. Holloway, and K.

Forbus. Making intelligent systems team players: Case Studies and Design Issues. NASA

Technical Report 104738. Johnson Space Center. Houston, TX. September 1991.

Muratore, J., T. Heindel, T. Murphy, T., A. Rasmussen, and R. McFarland. Real-time Data

Acquisition at Mission Control. Communications of ACM. December 1990.

Schreckenghost, D. PDRS Intelligent System Human-Computer Interface Design Concepts.
Briefing at Johnson Space Center. July 1990.

Thronesbery, Carroll. Analysis and Design of Intelligent Systems: The Role of Operational

Prototyping. Presentation at JSC Training Class. June 1992.
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SECTION 6

FUEL CELL MONITORING SYSTEM

6.1 System Description

The FCMS is a fault management system for the Space Shuttle fuel cells and associated power
busses (both alternating current [AC] and direct current [DC]). The FCMS assists the EECOM

flight controller in detecting, diagnosing, and recovering from faults affecting these fuel cells. It
monitors telemetry data to assess the operational status of these electrical components, and recom-
mends crew and flight controller actions based on this assessment. The FCMS can detect multi-
ple, independent faults simultaneously.

The FCMS was developed in G2 and runs on a DEC station using Unix and XWindows. There is
also a version that runs on a MassComp Workstation. The FCMS is in use in a MPSR of the
Mission Control Center (MCC).

6.2 Intelligent System and Functions

The FCMS uses telemetry data to monitor the state and status of the three onboard fuel ceils and the
associated AC and DC busses, and to manage faults in these subsystems. The intelligent system is
built around the following set of fault categories that were identified by the EECOM flight
controllers:

Main DC Bus

High or low voltage
AC Bus

Phase shift (three-phase motor stopped)
Fuel Cell

Coolant pump failures (low delta P)
Reactant valve closure

H20 high pH
Stack high or low temperature
Amps high or low (NOT IMPLEMENTED)
Volts high or low (NOT IMPLEMENTED)

The FCMS architecture partitions the knowledge base into segments based on these fault cate-

gories. For each fault category there is a corresponding set of fault management rules, called an
algorithm. Each algorithm is implemented as a separate process, and can run independently and
concurrently with other algorithms. Within a fault category, algorithms can address multiple,
independent faults (e.g., detecting both value high and value low), but do not address fault propa-
gation and multiple, dependent faults.

Currently there are a total of 18 algorithms in the FCMS: three for each of the six fault categories
that have been implemented. These 18 algorithms contain approximately 50 rules that assist the
flight controller in fault diagnosis and recovery. There are an additional 30 or so rules to assist in

display management, message maintenance, and other system overhead requirements. These 80
rules are used by the system to deal with known faults and well-defined recovery procedures.
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An algorithm initiates fault diagnosis when specific fault conditions are detected (e.g., value out of
limits). Steps are recommended that the crew or flight controllers can take to diagnose and recover
from the fault. These steps usually include verifying sensor readings and (if possible) reconfigur-

ing the system to compensate for any lost functionality. The FCMS assists flight controllers in
performing the following fault management tasks:

Fault Detection

During normal operations, active algorithms monitor incoming telemetry for data values that
are out of limits, indicating a suspected fault.

Fault Isolation

When the system receives data that indicate a suspected fault, the monitoring algorithm sug-
gests actions for the crew to take to isolate the fault. As those actions are taken, the system
continues to monitor telemetry data to verify that data values change as expected, indicating
that the suspected fault is causing the problem.

Fault Recovery
When a suspected fault has been verified, the algorithm suggests specific actions for the crew
or flight controllers to take to either recover from the fault or to shut down the affected com-
ponent. These actions are specific to fault recovery and are not the same as the suggestions
for fault isolation mentioned previously. The algorithm then monitors telemetry data for an
indication that the suggested recovery actions have been completed, indicating that recovery

is complete. An algorithm expects to receive an indication that fault recovery actions have
been completed within a pre-specified time. ff such an indication is not seen, a second mes-
sage is issued reminding the flight controller of the suggested actions. Subsequently, if there
is still no indication of the actions being completed, the system turns off the monitoring

algorithm.

Like most systems used for real-time flight support, the FCMS has problems with the availability

and quality of telemetry data. Data is periodically unavailable due to LOS. Failure of a multiplex-
er/demultiplexer (MDM) also results in a partial data set, due to loss of data from sensors con-
nected to the failed MDM 3°. Data quality problems resulting in false alarms have also been a

problem. Data quality degrades near LOS. Although rarely occurring, a fuel cell shutdown results
in poor quality data. To minimize false alarms, the FCMS detects situations where data quality is
likely to be degraded. When a fuel cell shuts down, the FCMS automatically disables all algo-
rithms for that fuel cell to avoid errors due to bad data. The FCMS also uses the data quality indi-

cator from the RTDS data acquisition system to detect data problems. When data quality is not

perfect 31, the FCMS assumes LOS and automatically aborts active algorithms (although problems
can still occur, since some bad data have already been processed). All algorithms are aborted, even

if partway through a fault management sequence. Algorithms are not restarted again until AOS
(AOS occurs when data quality is perfect). Because a restart resets the knowledge base, all con-
clusions made before the restart are lost. Thus, a restarted algorithm may either re-discover a fault

detected prior to LOS (and issue duplicate messages and recommendations), or may miss it if no
evidence of the fault is seen in data received after the restart (e.g., crew fixed problem during

LOS). In addition to these automatic responses, the operator has the ability to manually abort and

restart specific algorithms if data problems are observed.

30 In an earlier version of the FCMS, the system detected MDM failures and shut down the associated algorithms.
Recent changes in the RTDS data acquisition software have removed access to the data required to detect MDM
failures.

31 Data quality is not perfect when the value of the quality indicator is less than 100, indicating that at least one data
frame in the last 100 cycles was bad.
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6.3 Human-Intelligent System Interaction Functions

The FCMS is designed to assist flight controllers in managing faults in the Space Shuttle fuel cells.
Fault management using the FCMS is a collaborative effort between the operator and the system.
Like many intelligent systems in the case study, the FCMS assesses the state of the monitored pro-
cess and alerts the operator of process anomalies indicated by out-of-limit conditions. State infor-
marion is used to annotate system schematics and alarm messages are listed chronologically. Plots
of related telemetry data can be accessed to illustrate the evidence for an intelligent system conclu-
sion. The FCMS, however, provides capability beyond most intelligent systems studied by also
assisting the operator in fault isolation and recovery. Actions for isolating suspected faults are
recommended via a separate diagnostic message list. Actions for recovering from faults are rec-
ommended via a third message list (the operator display). As these recommendations are enacted,
the system monitors telemetry data for evidence that these actions have been executed successfully.

Although the FCMS can recommend that actions be executed, it does not actually issue commands
(i.e., the flight controller must take action, or request that the crew take action). Thus, the flight
controller has the option of ignoring system recommendations. However, if the system gets no
indication of the successful completion of the recovery actions that it suggests, it will stop the as-
sociated algorithm. When an algorithm has been automatically stopped in this manner, the flight
controller must manually restart it. If a previously discovered fault situation has not been resolved,
this restarted algorithm will rediscover the same fault and issue duplicate suggestions for recovery.

The FCMS supports the operator in supervising its activities. As described previously, the knowl-
edge base is partitioned into separate algorithms, and the operator can monitor and control each
algorithm independently. The operator can monitor the status of an algorithm, where status de-
notes if the algorithm is running or is turned off. Additionally, if the algorithm is turned off, the
operator can determine why (e.g., automatically shutdown at LOS). The operator can also control
algorithms singly, or can control the complete set of algorithms for each fuel cell. The ability to
selectively disable and restart portions of the knowledge base is one of the more interesting aspects
of this case, because intelligent systems typically being built by NASA do not provide for such
selective control. Selectively disabling portions of the knowledge base provides for graded control
of the intelligent system. Part of the system can be restarted or disabled while the remainder of the

system operates as usual. The ability to control a portion of the knowledge base can be used by the
operator to respond to intelligent system error situations as follows:

• Minimize the adverse effects of bad or unavailable data on the intelligent system
• Respond to unexpected situations that cause intelligent system errors
• Continue operating when part of the knowledge base is erroneous

The FCMS knowledge base is partitioned such that there are no dependencies between algorithms,
i.e., no information is exchanged between algorithms. This permits gracefully shutting down an
algorithm by minimizing the need to "clean up" after disabling an algorithm. Any interim or erro-
neous conclusions left over from the suspended processing do not affect the other portions of the
system. Once the algorithm is restarted, the knowledge base is cleaned up by returning to a default
configuration.

6.4 Supporting User Interface Capabilities

The workspace of the FCMS user interface (figure 6-1) consists of three areas: (1) a dynamic re-
gion in which the user selects what is displayed, (2) a set of three message lists, and (3) system
configuration buttons. The dynamic region can display the algorithm control panel, a subsystem
schematic, or a high density data display. The algorithm control panel is used to monitor and con-
trol the fault management algorithms. The subsystem schematics are used to monitor the state and
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status of the components of the fuel cells and the main AC and DC busses. The high density data
displays show relevant telemetry, similar to the tabular data display currently used for mission
support. The message lists categorize intelligent system messages to support different fault man-
agement tasks. System configuration buttons are used to configure both the intelligent system and
the user interface workspace. Each of these is discussed below.

Figure 6-1. FCMS Workspace Layout.

Algorithm Control Panel

As mentioned in the previous section, the FCMS supports user supervision of the system. The
algorithm control panel (figure 6-2) supports the flight controller in monitoring the status of each
algorithm and controlling its activity. Within the Algorithm Control Panel, algorithms are grouped
under the eight fault categories listed in section 6.2. Each category has three algorithms associated
with it (one for each fuel cell or bus). For each algorithm, there is a status descriptor and a check
box used to control the algorithm. The status descriptor indicates whether the algorithm is active or
disabled, and gives some indication of why it was disabled. When the algorithm is active and
monitoring data normally, the status descriptor is set to "looking." When the algorithm is disabled,

the status descriptor indicates one of the following:

• Stopped - the algorithm was manually disabled
• LOS - the algorithm was automatically disabled at LOS
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• FC shutdown - the algorithm was automatically disabled at fuel cell shutdown

Note that these status values also support managing the monitored process by identifying when a
fuel cell has been shut down, and when LOS has occurred.

Controlling algorithms is a two-step process. First, the operator chooses the check box near the

selected algorithm. Next, the operator chooses either the "Start" button to enable the algorithm, or
the "Stop" button to disable the algorithm (these buttons are located near the top of the display).
The operator may "Cancel" a previous action as well. This panel also provides the user with win-
dow management capability ("Hide"; "Console" to return to a start-up display) and testing capabil-
ity ("Test" to use simulated data to test algorithm).

Figure 6-2. The Algorithm Control Panel.

Schematics

Subsystem schematics are provided for each fuel cell, and for the main AC and DC busses.

Schematics are annotated with telemetry data. Data values are displayed using both a telemetry
bubble display format and a tabular display format. These forms are placed on the schematic near
the source of the data. The tabular displays resemble the high density displays currently used for
mission support, except that data are organized around the physical components of the system. As

seen in many other systems studied, plots of data are also accessible from the schematic via pop-up
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window. These plots show the last two minutes of data. As originally designed, the system was
also able to annotate schematics with information about MDM failures (a red flag was placed on

each telemetry bubble affected by the failed MDM). When the RTDS moved to a new software
version, the data necessary to recognize an MDM failure was no longer available to the FCMS.

Message Lists

During fault management, each algorithm issues three different types of messages: alarms, diag-
nostics, and recommendations. When multiple algorithms are active, a large number of messages

are generated. To help flight controllers manage these messages, messages are categorized by the
type of task they support: alarms for fault detection, diagnostics for fault isolation, and operator
messages for fault recovery. The following message lists are provided, one for each type of

message:

• Alarm messages - annunciate the violation of a data limit
• Diagnostic messages - provide information supporting fault diagnosis
• Operator messages - recommend crew or flight controller actions

Operator messages also have a criticality associated with them. "Normal" operator messages
contain recommended actions. "Urgent" operator messages warn that earlier recommendations
have not been followed.

Color is used in a variety of ways in the message lists Messages are color-coded by category of

message. The criticality of operator messages is indicated using color as well. Color is also used
to indicate that a message has been acknowledged. Color-coding conventions for messages are as
follows:

• Black text on yellow background - alarm message, urgent operator messages
• Yellow text on blue background - normal operator message
• Red text on white background - diagnostic message

• black text on green background - acknowledged message

Message lists can be manually displayed or hidden using the system configuration buttons at the
left of the screen. Message lists are automatically displayed when a message is posted.

There are difficulties in using message lists for displaying information from concurrently executing
algorithms (processes). Since all messages of a given category are posted to one message list,
messages from different algorithms are interleaved chronologically. In situations where multiple
faults are diagnosed simultaneously, it is difficult to determine which messages are associated with
which fault. It is also difficult to see causal relationships between messages, since temporal

proximity does not imply relatedness and related messages can be physically separated in the list.
This system has a further problem with messages that are posted out of order if the operator is
scrolling at the time the message is generated.

System Configuration

The system configuration region on the display (figure 6-1) is used both to configure the intelligent
system and to configure the user interface. Intelligent system configuration capability includes the

following:

• Reset - resets the knowledge base
• Set Limits - sets the data limits used to trigger algorithms
• Set Alarms - sets the data limits used for annunciating alarms
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Configuring the user interface involves managing the windows displayed on the screen.
Workspace management capability includes the following:

• Hide - hides the window currently displayed in the dynamic region
• Fuel Cells - displays the fuel cell schematic window in the dynamic region
• EPDC - displays the Electrical Power Distribution and Control schematic window in the

dynamic region

• Algorithms - displays the Algorithm Control Panel window in the dynamic region
• Displays - displays the high density tabular displays of data (mimics current Space Shuttle

telemetry displays)
• Messages - displays the three message lists
• Hide Messages - hides all message lists

The Demo button is an artifact of the development process and is used to activate a canned demon-
stration of the system.

6.5 Design Process

The FCMS is in many ways a typical RTDS prototype development project, using iterative proto-
type development and evaluation in the operational environment. The flight controllers did the ini-
tial work in specifying the algorithms necessary to develop the sequences of actions that are used in
the FCMS and were involved at various points in reviewing the layout of the displays. However,
because of flight controller turnover, there has been less user involvement in later FCMS develop-
ment activities. This lack of user involvement has also had some impact on system acceptance and
the feeling of ownership on the part of the flight controllers. At the date of the last interviews
(August 1992), the system was being evaluated in the MCC MPSR during missions and simula-
tions. More use in the MPSR will provide feedback necessary to make the system more robust and
more useful.

This system began as a prototype in the Workstation Prototyping Lab in the Mission Support
Directorate, and later became an RTDS system in the Mission Operations Directorate. Charlie
Robertson of McDonnell Douglas and Curtis Welborn of NASA Mission Support Directorate (the
first task monitor) were the initial system co-developers. When Welborn left NASA, Janet Laurit-

son took over the task-monitoring responsibilities. The system later transferred to RTDS and Troy
Heindel became the task monitor. Larry Minter, in the Electrical Systems Section of the Electrical
and Environmental Systems Branch was the flight controller who provided input on the algorithmic
data, advice on initial display layouts, and expert consultation on operational issues. Rami AI-

Ayoobi was not involved in the initial development, but is the current flight controller point of
contact and user representative.

6.6 Study Method

Information about the FCMS was obtained from demonstrations and interviews with C. Robertson

(MDSSC) and Jerry Snider (MDSSC) in March (9, 18) and August (14, 18) of 1992. The case
data sources cited in section 6.7 were also used, and the figures shown throughout section 6 were
derived from figures included in these case data sources.

Project Representatives

Charlie Robertson (MDSSC)
Jerry Snider (MDSSC)
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6.7 Case Data Sources

Bloom, Jonathan. Requirements, Level B/C, for the Bus Loss Integrated Smart System. October
1991.

Robertson, C. Space Shuttle Fuel Cell Monitoring System (FCMS) (draft). McDonnell Douglas

Space Systems Co. Houston, TX. September 1990.

Welborn, C., and C. Robertson. Multi-Threaded Procedural Reasoning in Real-Time Health

Monitoring of Manned Spacecraft Systems. Proceedings of the International Symposium on

Ground Data for Spacecraft Control. European Space Agency. Darmstadt, FRG. June 1990.
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